
Description of MATLAB Scripts

Daniel van den Berg1* and Daan van der Hoek1

1*Delft Center for Systems and Control, Delft University of Technology,
Mekelweg 2, Delft, 2628 CD, Zuid Holland, The Netherlands.

*Corresponding author(s). E-mail(s): d.g.vandenberg@tudelft.nl;

Introduction

This document will describe the four MATLAB scripts that are used to create the
figures in the linked publication. Each MATLAB script creates one of the figures in the
work. Also included in the repository is the data required to produce the figures. This
data is already post-processed from the original data acquired during the experiments.
The data that is included with the MATLAB figures is the phase averaged and time-
averaged data, in both cases binned to 40 mm and 60 mm bins. The 40 mm data gives
the most detail at the cost of accuracy, the 60 mm data is more accurate at the loss of
details. The data can be found in their respective folders. We refer to the table with
cases presented in the paper to link individual files to different experiments.

Every script starts with a similar piece of code to identify the files that need to be
loaded. For the phase-averaged data the piece of code is as follows:

clear all; clc; %close all;

addpath(genpath('.\ Functions '))

fileList = dir('Phase_Averaged_Data\');
allFileNames = {fileList.name};

pattern = 'PA';
p=0;

for k = 1 : length(allFileNames)

thisFileName = fullfile(fileList(k).folder ,

allFileNames{k});

if ~contains(thisFileName , pattern , 'IgnoreCase ',
true)

continue;

end

p = p+1;

folders{p} = thisFileName;

end

stringsort = {'BL','NoYaw ','yaw_0deg ','yaw_90deg ','
yaw_180deg ','yaw_270deg '};

for i_0 = 1: length(folders)

comparestring = contains(folders ,stringsort{i_0}) ;

1



indstore(i_0) = find(comparestring == 1);

end

For the time-averaged data only the pattern that is used to identify is different. The
second part of the code sorts the indices such that later in the script post-processing
the data can be done in the same order as the cases presented in the table in the work.
This needs to be done because MATLAB automatically places the ‘90deg’ case at the
back of the vector. This step simplifies the plotting of the data later on in the code.

Importing The Data

The following piece of code shows how to import and extract the phase-averaged
data. The first piece of the code selects the ‘Binsize’. For this data set this number
can either be 40 (as in the example) and 60, The ‘case numb’ is only used for the
phase-averaged data. For the Helix cases, the phase-averaged data is divided into 72
‘average’ time steps. The baseline cases exists of 6 phase-averaged data steps. For
the figures using phase-averaged data, single case numbers are used to show a phase-
averaged snapshot. Importing the data is done over the ‘folders’ variable, which has
the list of the cases that were found in the previous piece of code. Once the data
is loaded the ‘binned data’ variable contains all the binned data. In this code the
coordinates are imported (X − Y − Z), the magnitude of vorticity, W , the velocity
components, Ux, Uy, Uz, vorticity components, Wx, Wy, Wz and Q-criterion. Finally,
binned data.RS contains the Reynold stressed in all directions.

Binsize = '40';
case_numb = [1006 1036 1036 1036 1036 1036];

for i_1 = 1: length(folders)

load(strcat(folders{indstore(i_1)},'\binned_data_pa_ ',
...

num2str(Binsize),'mm_bin30_ ',num2str(case_numb(i_1)),'.
mat'));

disp(strcat('Loaded Case:',folders{indstore(i_1)}))

X = binned_data.A{1};

Y = binned_data.A{2};

Z = binned_data.A{3};

W = binned_data.OMEGA_mag;

Ux = binned_data.U{1};

Uy = binned_data.U{2};

Uz = binned_data.U{3};

Wx = binned_data.OMEGA {1};

Wy = binned_data.OMEGA {2};

Wz = binned_data.OMEGA {3};

Q = binned_data.Q;

P = [3 2 1];

Wx(isnan(Wx)) = 0;

Wy(isnan(Wy)) = 0;

Wz(isnan(Wz)) = 0;

Ux(isnan(Ux)) = 0;

W(isnan(W)) = 0;

Q(isnan(Q)) = 0;

Q_store (:,:,:,i_1) = Q;

end

2



When during the binning process no particles are found within the volume it will
result in a NaN value. Every NaN value is changed to a zero value which is required
for plotting the surfaces. Finally, the dimensions of the 3D data are given in y− x− z
orientation. Further post-processing can be done on this data. For example, in the
script ‘plot Velocity Vorticity Fig3.m’ the data is interpolated to enhance the details
in the data. The second part of the script is dedicated to plotting the figure. This
method of importing is used in the following scripts

• ‘plot Velocity Vorticity Fig3.m’,

• ‘plot Entrainment Fig5b.m’,

• ‘plot HubVortex Qcrit Fig6ab.m’,

after which further post-processing is done accordingly.

Specific Remarks Scripts

The scripts

• ‘plot Windspeed Fig4.m’,

• ‘plot Entrainment Fig5b.m’,

• ‘plot HubVortex Qcrit Fig6ab.m’,

all perform further steps once the data is imported, or in the case of
‘plot Windspeed Fig4.m’ a different data set is used. Specific remarks about the pieces
of code used are given in this section.

Remarks ‘plot Windspeed Fig4.m’

This script generates Figure 4 in the paper which shows the evolution of wind speed as
a function of downstream distance. This script uses a time-averaged data set whereby
the whole domain is binned in one single run. The following code loads the data from
one of the measurements and extracts the x-dimension data. The for-loop imports
post-processed time-averaged wind speed data.

load('Phase_Averaged_Data\PA_CCW_NoYaw\
binned_data_pa_40mm_bin30_1001.mat');

X = binned_data.A{1}/1000;

plot_idx = 1:293;

vel_idx = 11:276;

resultFolder = dir('Wind_Speed_Data/fAP_pa_*');
for i = 1: length(resultFolder)

load(strcat(resultFolder(i).folder ,'\',resultFolder(i).
name))

[fAPvar(i,:),fAPavg(i,:)] = var(cell2mat(fAP) ,1,'
omitnan ');

for i2 = 1: length(UxInt)

bla = cell2mat(UxInt(i2));

Ux(i2 ,:) = bla (1:282);

end

[Uxvar(i,:),Uxavg(i,:)] = var(Ux ,1,'omitnan ');
clear Ux

end

3



The first ten entries from the data are removed from the data set as they only contain
NaN values after which it is stored in the appropriately named ‘bla’ vector. The
imported data also contains the rotor power. This value represents the total power
of the flow going through the area of the rotor disk. Since the power a wind turbine
produces scales with wind speed to the third power, a small change in wind speed
leads to a large change in power. For the explanation of MATLAB functions we would
refer to the Mathworks documentation.

Remarks ‘plot Entrainment Fig5b.m’

This script contains the following piece of code in the import script. This part of the
script transforms the imported data from cartesian coordinates to radial coordinates.
This is used in the original work to calculate the entrainment over the rotor edge
which is selected using the rotor ind variable. The reason for not transforming the
entire domain to radial coordinates is given in the manuscript.

% Convert the time averaged data from cartesian to

cylindrical

% coordinates.

k_phi = 1;

MKE_rad = [];

for phi = -45:1:225

upvrp = cosd(phi).*upwp + sind(phi).*upvp;

F_RS = griddedInterpolant(permute(X,[2 1 3]),

permute(Y,[2 1 3]),permute(Z,[2 1 3]),permute(

upvrp ,[2 1 3]));

F_U = griddedInterpolant(permute(X,[2 1 3]),permute

(Y,[2 1 3]),permute(Z,[2 1 3]),permute(Ux ,[2 1

3]));

% extract slice

r = 0:10:400;

[xGrid ,rGrid] = ndgrid(X(1,:,1),r);

yGrid = rGrid .*sind(phi);

zGrid = rGrid .*cosd(phi);

MKE_rad = cat(3,MKE_rad ,-F_U(xGrid ,yGrid ,zGrid).*

F_RS(xGrid ,yGrid ,zGrid)./Ufs ^3);

k_phi = k_phi + 1;

end

MKE_rad_avg_full = mean(MKE_rad ,3," omitnan ");

MKE_rad_avg_full_store(i_1 ,:,:) = MKE_rad_avg_full;

rotor_ind = 28:30; % These indices correspond to the

rotor edge in the cylindrical data.

MKE_sum_full(i_1 ,:) = sum(MKE_rad_avg_full (:, rotor_ind)

,2)/length(rotor_ind) ;

Remarks ‘plot HubVortex Qcrit Fig6ab.m’

The final script considered is the script that is responsible for plotting the figures
containing the traced hub vortex. This script examines four different phase-averaged
time steps for three different cases. Because it examines a few time steps this
script takes a long time to run, and requires some RAM to be available to
load and store the data for analysis.

4



The tracing is done using a Gaussian convolution method. The following piece of
code generates a grid, named test grid in that creates a grid of ones and zeros.
Because we know that the hub vortex remains within one rotor area we exclude every
piece of data outside that area by multiplying our data grid with test grid in. A
convolution of this new grid with a Gaussian curve will indicate the location of the
hub vortex based on the location where the convolution is highest. The following piece
of code performs the analysis:

%% Full domain inner vortex

test_grid_in = sqrt(zint .^2+ yint .^2) < Drot

*0.75;

y_0 = round(length(yint)/2);

z_0 = round(length(yint)/2);

sig_y = 90;

sig_z = 90;

F_gauss = -1*exp(-(((yint -yint(z_0 ,y_0)).^2)

/(2* sig_y .^2) +((zint -zint(z_0 ,y_0)).^2) /(2*

sig_y .^2)));

convolute = conv2(F_gauss ,Wdata '.* test_grid_in ,
'same');

[~,I] = max(convolute ,[],'all','omitnan ');
[gaus_z ,gaus_y] = ind2sub(size(zint),I);

z_gaus_inner(p_i_0 ,p,i_1 ,:) = zint(gaus_z ,

gaus_y);

y_gaus_inner(p_i_0 ,p,i_1 ,:) = yint(gaus_z ,

gaus_y);

Wframe = fliplr(squeeze(Q(:,i2 ,:)));

Wdata = interp2(Yframe ',Zframe ',Wframe ',yint ,
zint ,'spline ');

A similar piece of code can be found that goes through the same steps but then
for the tip vortices. This data is not used in the manuscript but the code is included
for completeness sake.

%% Full domain tip vortex

test_grid_out = sqrt(zint .^2+ yint .^2) > Drot

*0.2;

sig_y = 90;

sig_z = 90;

F_gauss = 1*exp(-(((yint -yint(z_0 ,y_0)).^2) /(2*

sig_y .^2) +((zint -zint(z_0 ,y_0)).^2) /(2*

sig_y .^2)));

convolute = conv2(F_gauss ,Wdata '.* test_grid_out
,'same');

[~,I] = max(convolute ,[],'all','omitnan ');
[gaus_z ,gaus_y] = ind2sub(size(zint),I);

z_gaus_outer(p_i_0 ,p,i_1 ,:) = zint(gaus_z ,

gaus_y);

y_gaus_outer(p_i_0 ,p,i_1 ,:) = yint(gaus_z ,

gaus_y);

5


