Supplemental Material for Submission 586
Deep Reinforcement Learning for Active Wake Control

GRIGORY NEUSTROEV, Delft University of Technology, the Netherlands

SYTZE P. E. ANDRINGA, Delft University of Technology, the Netherlands

REMCO A. VERZIJLBERGH, Delft University of Technology & Whiffle, the Netherlands
MATHIJS M. DE WEERDT, Delft University of Technology, the Netherlands

ACM Reference Format:

Grigory Neustroev, Sytze P. E. Andringa, Remco A. Verzijlbergh, and Mathijs M. de Weerdt. 2022. Supplemental
Material for Submission 586 Deep Reinforcement Learning for Active Wake Control. In Proc. of the 21st
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022), Online, May 9-13, 2022,
IFAAMAS, 3 pages.

1 WINDFARMENYV API

Our wind farm environment follows the OpenAl Gym convention. It is implemented as a class
WindFarmEnv derived from the base Env class of Gym, and has the following methods:

e step(action): takes the agent’s action, runs a single step of the environment’s dynamics,

and returns a tuple of four elements:

— observation,

— reward,

— done: in Gym signifies terminal states, currently always False,
— info: diagnostic information, currently empty.

e reset(): resets the environment to the initial state, including the atmospheric simulation
process.

e render (mode): renders a single frame of the environment; supports two modes: "human' to
play the frame (usually called in a loop and results in an animation) and 'rgb_array' (for
recording).

e close(): finalizes the environment.

e seed(): sets the seed for the random number generator.

The constructor WindFarmEnv (. . .) supports the following parameters. All of them are optional,
and default values will be used if no value is provided.

e seed: random seed;

e floris: either an existing floris_interface object or a path to a JSON file with FLORIS
configuration required to instantiate a FLORIS model;

time_delta: time interval At (in sec) between time steps;

turbine_layout, mast_layout: coordinates of the turbines and meteorological masts;
observe_yaws: if True, yaws are added to the state vector;

lidar_turbines: either 'all' or a list of turbines which have nacelle-mounted lidars;
lidar_range: distance in meters between the rotor and the lidar measurement point;
farm_observations, mast_observations,

lidar_observations: lists of atmospheric conditions observed at each level;

e normalize_observations: if True, the observations will be rescaled to [0, 1];

e observation_boundaries: used for rescaling the observations;

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022), P. Faliszewski,
V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13, 2022, Online. © 2022 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

perturbed_observations: indices of observations to add Gaussian noise to;
perturbation_scale: standard deviation of the noise relative to their scale;
max_angular_velocity: maximum turbine rotation wp,x per time step;
desired_yaw_boundaries: yaw boundaries relative to the wind, ymin and ymax;
action_representation: 'yaw', 'absolute', or 'wind';

wind_process: the stochastic process governing the transitions;
random_reset: if True, upon reset the environment is set to a random yaws.

The use of WindFarmEnv is similar to other Gym environments. For example, the following code
will show an animation of the environment with the default settings and random actions being
performed for 1000 steps.

1 from wind_farm_gym import WindFarmEnv
; env = WindFarmEnv ()

5 observation = env.reset()
6 for i in range(1000):
action = env.action_space.sample()

8 observation, reward, = env.step(action)

-

9 env.render ()

Listing 1. Minimal example

1.1 WindProcess API

State transitions of WindFarmEnv are generated by an object of class WindProcess. Users can create
their own implementations, as long as they implement the following API:

e step(): returns a dictionary of atmospheric conditions for the next step of the environment,
for example, { 'wind_direction': 270.0, 'wind_speed': 9.53}.

e reset().

o close(): finalizes the process; for example, if the process uses lazy reading from a file, this
method should close the file.

This process does not have to generate the transitions randomly, so the seeding method is not
mandatory.
As part of our environment, we include three classes of wind data processes:

e MVOU-driven transitions. The user can initialize arbitrary multivariate processes, as long as
they provide the required vectors and matrices and give a list of measurements to map the
data to.

e Transitions from a . csv file. If the user has access to historical data at a sufficiently fine
resolution, they can use it to generate each time step of the simulation. This can be useful for
wind energy researchers who may have access to better wind models than a simple MVOU
process we provide.

o Gaussian noise. This can be achieved with MVOU by using zero drift and an identity diffusion
matrix, but we add it separately for more efficient computations, as Gaussian noise is used in
observation perturbations.

2 EXPERIMENT IMPLEMENTATION DETAILS

The hyperparameters used by each agent in the benchmarks are listed in Table 1. The second
experiment uses the same parameters unless explicitly listed. After the first experiment, the learning
rates of SAC were additionally tuned for the second experiment using a grid search.

Table 1. Hyperparameters of the deep reinforcement learning agents

parameter I II notes
discounting factor 0.99
sampling batch size 128
size of replay buffer 10°
start learning at step 4321 7201 after the first evaluation
actor learning rate 1073 107°
layers 1072 107*
neurons per layer 128
activations ReLU
critic learning rate 0.01
layers 2
neurons per layer 128
activations ReLU
target updates Polyak tau 0.05
frequency 60
TD3 policy noise 0.2 only in training
policy update frequency 60
noise clipped at +0.5
gradient norm clipped at +0.5
SAC initial alpha 1.0 using autotuning method
alpha learning rate 1072 107*

	1 WindFarmEnv API
	1.1 WindProcess API

	2 Experiment implementation details

