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Abstract: An algorithm is proposed for the subspace identification of a generalized discrete
linear time invariant model structure, composing of a deterministic and a stochastic subsystem
that are only partially coupled. In a first step, the impulse response of the deterministic
subsystem and the correlation function of the stochastic subsystem are estimated in a
statistically consistent way. The second step consists of system realization, where a specific
choice of the state-space basis, that reveals the deterministic and the stochastic dynamics and
their coupling, is imposed. A simulation example illustrates the identification of a system that
is excited by a known input and by colored noise.

1. INTRODUCTION

The identification of a discrete linear time-invariant (LTI)
system involving both deterministic dynamics (due to
observed inputs) and stochastic dynamics (due to unob-
served inputs and output noise) starts with the selection
of a proper model structure. Following the terminology
of Ljung [1999], a discrimination can be made between
the following model structures, depending on the degree
of coupling between the deterministic and the stochastic
subsystems:

ARMAX the deterministic and stochastic subsystems
are fully coupled, i.e., they share all their poles;

Box-Jenkins the deterministic and stochastic subsys-
tems are not considered as coupled;

ARARMAX the deterministic subsystem shares all of
its poles with the stochastic subsystem, but not vice
versa;

Generalized the deterministic and stochastic subsys-
tems share only part of their poles.

In state-space form, the ARMAX model structure is the
one that is predominantly considered in the subspace
identification literature, see, e.g., the surveys of Viberg
[1995], Van Overschee and De Moor [1996], and Bauer
[2005]. When the deterministic and stochastic dynamics
are uncoupled, the orthogonal decomposition algorithm
of Verhaegen [1993] and Picci and Katayama [1996] can
be used to identify a Box-Jenkins model structure, viz., a
completely decoupled state-space model. Chiuso and Picci
[2004] derived that in case a joint model is identified, while
in reality the deterministic and stochastic dynamics are
uncoupled, the resulting ARMAX model is badly over-
parameterized and suffers from worse numerical condition-
ing than a separately parameterized model.

In this paper, the subspace identification of the generalized
model structure, comprising ARMAX, Box-Jenkins, and
ARARMAX models as special cases, is treated. A gen-

eralized state-space model is presented in section 2. The
proposed identification algorithm consists of two steps.
In a first step, the impulse response of the deterministic
subsystem and the correlation function of the stochastic
subsystem are estimated in a statistically consistent way,
as discussed in sections 3 and 4, respectively. The second
step consists of the realization of the generalized state-
space model, where a specific choice of the state-space ba-
sis, that reveals the deterministic and stochastic dynamics
and their coupling, is imposed (see section 5). In section 6,
a numerical simulation is presented, where an ARARMAX
model structure is identified.

2. A GENERALIZED STATE-SPACE MODEL

A state-space model that describes a generalized combined
deterministic-stochastic discrete LTI system is 1
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where yk ∈ Rny is the vector with observed outputs,
uk ∈ Rnu the vector with observed inputs, x1

k ∈ Rn1 the

1 By replacing the non-stationary Kalman filter by a stationary one
and applying a z-transform and Cramer’s rule, it is formally shown
that each element of the obtained common denominator transfer
function model satisfies the generalized model structure definition
of Ljung [1999].
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part of the state vector xk ∈ Rn that describes the purely
deterministic dynamics, x2

k ∈ Rn2 describes the common
dynamics and x3

k ∈ Rn3 describes the purely stochastic
dynamics. Kk ∈ Rn×ny is a non-stationary Kalman filter
corresponding to the innovation vector ek ∈ Rny .

The generalized combined deterministic-stochastic de-
scription (1-2) can be formally decoupled in a deterministic
subsystem
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and a stochastic subsystem
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where yk = yd
k + ys

k and x2
k = x2d

k + x2s
k .

3. OBTAINING THE IMPULSE RESPONSE OF THE
DETERMINISTIC SUBSYSTEM

This section deals with the estimation of the first 2ı
impulse response matrices Hk, k = 0, . . . , 2ı − 1 of the
deterministic subsystem (3-4).

3.1 Notations

Denote H0|2ı−1 as the matrix containing the stacked
impulse response matrices, i.e.,

H0|2ı−1 ,
[
HT

0 HT
1 . . . HT

2ı−1

]
.

Suppose an input-output trajectory wN , generated by the
system (1-2), is observed:

wN , {(u0, y0), (u1, y1), . . . , (uN−1, yN−1)}.

A block Hankel matrix of a subsequence of (qk), k =
0, . . . , N − 1 is denoted as

Qk1|k2
,
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
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where 0 ≤ k1 < k2 < 2(ı+ℓ)−1 and  = N−2(ı+ℓ)−1 with
ℓ strictly larger than the system’s time lag (i.e., the system
order plus the delay, see Willems et al. [2005] for a formal
definition), and its row span is denoted as Qk1|k2

. So,
Yk1|k2

is a block Hankel matrix of outputs with row span
Yk1|k2

, Uk1|k2
is a block Hankel matrix of inputs with row

span Uk1|k2
, Ek1|k2

is a block Hankel matrix of innovations

with row span Ek1|k2
, etc. With these notations, it follows

from (3-6), that
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3.2 A strongly consistent estimator

As shown in Markovsky et al. [2005], one has that, under
the assumptions that the deterministic subsystem is con-
trollable and (uk) is persistently exciting (Willems et al.
[2005]) of order ≥ 2ı + ℓ + n1 + n2,

[
U0|2ı+ℓ−1

Y d
0|2ı+ℓ−1

]

G̃ =

[
O

H0|2ı−1

]

,

where

O =
[
0nu×nuℓ Inu

0nu×(2ı−1)nu+ℓny

]T
.

This equation can be solved for G̃ from the first (2ı +
ℓ)nu + ℓny rows, after which H0|2ı−1 is calculated exactly
from the last 2ıny rows:

H0|2ı−1 = Y d
ℓ|2ı+ℓ−1

[
U0|2ı+ℓ−1

Y d
0|ℓ−1

]†

O, (9)

where �
† denotes the Moore-Penrose pseudo-inverse (Ben-

Israel and Greville [1974]).

However, the deterministic outputs in Y d
0|2ı+ℓ−1 are not

directly observed, and this deterministic algorithm should
be changed in case combined deterministic-stochastic dy-
namics are present. Hereto, the following assumptions are
made.

Assumption 1. The input sequence (uk), k = 0, . . . , N − 1
is observed free of noise and it is persistently exciting of
order ≥ 2(ı + ℓ)+ n1 + n2. The deterministic system (3-4)
is controllable.

Assumption 2. The stochastic outputs are uncorrelated
with the observed inputs, i.e.,

∀k, l : E
(
ys

kuT
l

)
= 0,

where E denotes the expectation operator.
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A possible estimate for Y d
0|2ı+ℓ−1 is the orthogonal pro-

jection Y0|2ı+ℓ−1/U0|2ı+ℓ−1, see, e.g., Chiuso and Picci
[2004]. However, the row rank of this projection is gener-
ally smaller than dim(Y d

0|2ı+ℓ−1), since it follows from (7)

that

rowspan(Y d
0|2ı+ℓ−1) ⊆ X

d
0|0 ∨ U0|2ı+ℓ−1,

where ∨ denotes joint row space, and generally X
d
0|0 *

U0|2ı+ℓ−1. As a consequence, (9) is not exact anymore

when Y d
0|2ı+ℓ−1 is projected onto U0|2ı+ℓ−1. Therefore,

the following projection is proposed.

Theorem 1. The following estimate for the impulse re-
sponse sequence is statistically strongly consistent 2 for
 → ∞ under assumptions 1 and 2:

Ĥ0|2ı−1 ,

Yℓ|2ı+ℓ−1/U0|2(ı+ℓ)−1

[
U0|2ı+ℓ−1

Ŷ0|ℓ−1/U0|2(ı+ℓ)−1

]†

O. (10)

Proof. The proof follows the same lines as the proof
of Theorem I in Reynders et al. [2008], where a slightly
different consistent estimator is proposed. The estimator
proposed here is statistically more efficient.

4. OBTAINING THE OUTPUT CORRELATION
SEQUENCE OF THE STOCHASTIC SUBSYSTEM

Denote L1|2ı−1 as the matrix containing the stacked
stochastic output correlation matrices, i.e.,

L1|2ı−1 ,
[
ΛT

1 ΛT
2 . . . ΛT

2ı−1

]
,

where Λl is defined as

Λl , E
(

ys
k+ly

s
l

T
)

.

A block vector of a vector subsequence of (qk), k =
0, . . . , N − 1 is denoted as

qk1|k2
,

[
qT

k1
qT

k1+1 . . . qT
k2

]T
.

A consistent estimator for the output correlation sequence
of the stochastic subsystem is presented in the following
lemma.

Lemma 2. Under assumptions 1 and 2, the following esti-
mate for L1|2ı−1 is strongly consistent for  → ∞:

L̂1|2ı−1 ,
1


Ŷ s

1|2ı−1Ŷ s
0|0

T
.

where
Ŷ s

0|2ı−1 , Y0|2ı−1U
⊥
0|2(ı+ℓ)−1

with U
⊥
0|2(ı+ℓ)−1 the orthogonal complement of U0|2(ı+ℓ)−1

in U0|2(ı+ℓ)−1 ∨ Y0|2ı+ℓ−1.

Proof. In theorem 1, it was shown that, under assumption
1,

rowspan(Y d
0|2ı+ℓ−1) ⊆ U0|2(ı+ℓ)−1,

2 This means that the estimate converges to its true value ‘with
probability one’ or ‘almost surely’, see, e.g., Pintelon and Schoukens
[2001].

and consequently

rowspan(Y d
0|2ı+ℓ−1) ∩ U

⊥
0|2(ı+ℓ)−1 = ∅.

Since under assumption 2, one has additionally that

rowspan(Y s
0|2ı+ℓ−1) ⊆ U

⊥
0|2(ı+ℓ)−1,  → ∞,

it follows that

a.s.lim→∞

(

Y1|2ı−1U
⊥
0|2(ı+ℓ)−1

)(

Y0|0U
⊥
0|2(ı+ℓ)−1

)T

= L1|2ı−1.

5. REALIZATION OF THE GENERALIZED MODEL
STRUCTURE

5.1 Decomposition of the impulse responses

The impulse response matrices Hk of the deterministic
subsystem (3-4) can be written as a product of its system
matrices:

H0 = D, Hk = CdAk−1
d Bd = CAk−1B, k ≥ 1.

From this equation, the direct transmission term D can
be immediately obtained. Deterministic realization starts
with gathering the other impulse response matrices in a
block Hankel matrix (Ho and Kalman [1966]):

H1|ı ,







H1 H2 . . . Hı

H2 H3 . . . Hı+1

...
... . . .

...
Hı Hı+1 . . . H2ı−1







.

From (1-2), it follows that this matrix satisfies

H1|ı = O
d
ı C

d
ı = OıC

D
ı , (11)

where O
d
ı was defined in (8), and

C
d
ı ,

[

Bd AdBd . . . Ai−1
d Bd

]

Oı ,
[

CT (CA)T . . . (CAi−1)T
]T

(12)

C
D
ı ,

[
B AB . . . Ai−1B

]
.

5.2 Decomposition of the stochastic output correlations

Similarly, the output correlation matrices Λk of the
stochastic subsystem (5-6) can be written as a product
of its system matrices:

Λk = CsA
k−1
s G, k ≥ 1,

where G , E(xs
k+1ys

k
T ) (Akaike [1974]). Stochastic real-

ization starts with gathering these output correlations in
a block Hankel matrix:

Λ1|i ,







Λ1 Λ2 . . . Λı

Λ2 Λ3 . . . Λı+1

...
... . . .

...
Λı Λı+1 . . . Λ2ı−1







,
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which decomposes as

Λ1|ı = O
s
ı C

s
ı = OıC

S
ı , (13)

where O
s
ı and Oı were defined in (8) and (12), respec-

tively, and

C
s
ı ,

[
G AsG . . . Ai−1

s G
]

C
S
ı ,

[[
0
G

]

A

[
0
G

]

. . . Ai−1

[
0
G

]]

.

5.3 Combined decomposition

From the decompositions (11) and (13), it follows that

G1|ı ,
[
H1|ı Λ1|ı

]
= Oı

[

C
D
ı C

S
ı

]
.

It should be noted that, depending on the input and
output units chosen, H1|ı and Λ1|ı might be of completely
different orders of magnitude. Therefore, re-scaling them
could be necessary, for example as

Gr
1|ı ,

[

H1|ı

‖H1|ı‖

‖Λ1|ı‖
Λ1|ı

]

.

The matrices Oı, C
D
ı and C

S
ı can be obtained from G1|ı,

up to a similarity transformation of the A matrix, using
reduced singular value decomposition (Zeiger and McEwen
[1974], Kung [1978]):

G1|ı , USV T , US
[

V T
D V T

S

]
(14)

Oı = US1/2T−1 (15)

C
D
ı = TS1/2V T

D

C
S
ı = TS1/2V T

S

where S ∈ Rn×n contains the nonzero singular values and
U ∈ Rıny×n and V ∈ Rınu×n contain the corresponding
singular vectors. T ∈ Rn×n is an arbitrary nonsingular
matrix, that is chosen in such a way that the parametriza-
tion (1-2) is satisfied, i.e., in such a way that the last n3

rows of C
D
ı are zero while the first n1 rows of C

S
ı are zero

as well.

5.4 Choice of state-space basis

A two-step procedure is followed for the construction of
T :

T = T1T2,

where T1 is determined in the first step, and T2 in the
second step. In the first step, we try to make the last n3

rows of C
D
ı zero. This is achieved by the following full

singular value decomposition

S1/2V T
D , UDSDV D,

where SD ∈ Rn×n is the diagonal matrix containing
the singular values, the last n3 of which are zero. Since
consequently the last n3 rows of SDV D are zero, a good
choice for T1 is

T1 = UDT
.

In the second step, we try to make the first n1 rows of
C

S
ı zero, while ensuring that the last n3 rows of C

D
ı are

kept to zero. This is again achieved by a full singular value
decomposition,

UDT
S1/2V T

S , USSSV S,

where SS ∈ Rn×n is a diagonal matrix containing the
singular values, that are arranged in such a way that the
n1×n1 upper left part contains the n1 zero singular values.
Since with this arrangement the first n1 rows of SSV S are
zero, a good choice for T2 is

T2 =

[

US
1:n1+n2,:

T

0 In3

]

, (16)

where US
1:n1+n2,: denotes the matrix containing the first

n1 + n2 rows of US . The following lemma follows.

Lemma 3. When nuı ≥ (n1 + n2) and nyı ≥ n, the exact
decomposition (14-16) ensures that the parametrization
(1-2) is satisfied.

5.5 Obtaining the system matrices

C can be determined as the first ny rows of Oı, B as the

first nu columns of C
D
ı , G as the first ny columns of C

S
ı ,

and A from the shift structure of the matrix Oı (Kung
[1978]):

A = Oı
†
Oı (17)

where Oı is equal to Oı without the last l rows and Oı is
equal to Oı without the first l rows. Since the parametriza-
tion (1-2) is satisfied in the above decomposition, the sub-
matrices of A, B, and C in (1-2) are simply obtained
by dividing the estimated system matrices into blocks of
appropriate dimensions.

Corollary 4. From theorem 1 and lemmas 2 and 3, it
follows that, since the almost sure limit and a continuous
function may be interchanged, the estimates for the system
matrices are strongly consistent for  → ∞ under the
adopted assumptions.

5.6 Finite number of samples

For finite values of , the orders n1, n2 and n should be
estimated first, for instance as the number of significant
singular values of Ĥ1|ı, Λ̂1|ı, and Ĝ1|ı, respectively. Re-

placing H1|ı and Λ1|ı by their estimates Ĥ1|ı and Λ̂1|ı,
respectively, has the effect that the n−n1 smallest singular
values of SD and the n − n3 smallest singular values
of SS are nonzero for finite . When Ĥ1|ı and Λ̂1|ı are
replaced by their best rank n1 +n2 and n2 +n3 estimates,
respectively, before T is determined, the last n3 rows of

Ĉ
D

ı and the first n1 rows of Ĉ
S

ı are exactly zero. This

ensures that the identified B̂ and Ĝ matrices have the
correct block structure. For the identified Â matrix, this
is only asymptotically the case, for  → ∞.
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5.7 (AR)ARMAX and Box-Jenkins model structures

For an ARARMAX model structure, n1 = 0. The algo-
rithm for the generalized model structure can be used,
when the choice of T2 is changed to

T2 = In.

For a Box-Jenkins model structure, n2 = 0. In this case,
the algorithm for the generalized model structure can be
used without modifications. The assumptions needed here
are weaker than for the subspace algorithms for Box-
Jenkins identification of for instance Verhaegen [1993],
Picci and Katayama [1996], and Chiuso and Picci [2001,
2004], which require that X d

0|0 ⊆ U0|2ı+ℓ−1.

For an ARMAX model structure, n1 = n3 = 0. The
algorithm for the generalized model structure can be used,
when the choice of T is changed to

T = In.

In this case, the identified system model is balanced in
the deterministic sense. The presented algorithm provides
an alternative for existing subspace algorithms for the
identification of ARMAX models, such as the CVA (Lari-
more [1990]), PO-MOESP (Verhaegen [1994]), and N4SID
(Van Overschee and De Moor [1994]) algorithms, but its
computational cost is slightly higher.

6. APPLICATION: IDENTIFICATION OF A
STATE-SPACE MODEL INVOLVING COLORED

SYSTEM AND MEASUREMENT NOISE

First, it is explained how the situation where a system is
persistently excited by an observed input and by colored
measurement noise, leads to an ARARMAX model. Then,
a simulation example is given.

6.1 The model

The ‘classical’ (ARMAX) combined deterministic-stochastic
state-space model of a discrete LTI system reads in the
notation used here

x2
k+1 = A22x2

k + B2uk + K2
kfk (18)

yk = C2x2
k + Duk + fk, (19)

where K2
kfk ∈ Rn2 is called the system noise, and fk ∈

Rny the measurement noise 3 . When the system and mea-
surement noise satisfy a filtered white noise assumption,
they can be described using the forward innovation model

x3
k+1 = A33x3

k + K3
kek

fk = C3x3
k + ek.

Substitution into (18-19) yields

3 The notation fk is used instead of ek to emphasize the fact that
(fk) is possibly nonwhite and therefore not necessarily an innovation
sequence.

[
x2

k+1

x3
k+1

]

=

[

A22 K2
kC3

0 A33

] [
x2

k

x3
k

]

+

[
B2

0

]

uk +

[
K2

k

K3
k

]

ek

(20)

yk = [C2 C3]

[
x2

k

x3
k

]

+ Duk + ek, (21)

which satisfies the generalized model structure (1-6) for
n1 = 0 and A23 = K2

kC3. Consequently, an ARARMAX
model has been obtained.

6.2 Simulation example

The identification of the ARARMAX model (20-21) using
the proposed subspace algorithm is illustrated for the
following system

A22 =

[
0.5321 0.8349
−0.8349 0.5321

]

, A33 =

[
−0.9615 0.1313
−0.1313 −0.9615

]

B2 =

[
0.0012
−0.0007

]

, C =






−0.0267
2.6723
−0.0792
7.9236






T

, D = −0.0008

Kk = [0.0060 0.0009 0.0242 −0.1218]
T

.

The input uk and the innovation ek are both random
sequences with a Gaussian distribution of unit variance.
With these choices, the root mean square amplitude of
the deterministic and the stochastic parts of the output
have a ratio of around 15dB.

A Monte Carlo simulation with 1000 realizations, each of
length N = 10000, was performed. For each realization,
an ARARMAX model was identified using the parameter
choices ℓ = 4, ı = 15, n2 = 2, and n3 = 2. In each
Monte Carlo realization, the same deterministic input uk

was used, but a different innovation ek was generated.
Inspection of the singular values of the Hankel matrices
H1|ı, Λ1|ı, and G1|ı, reveals that H1|ı has two significant
singular values, Λ1|ı has four, and G1|ı has four as well,
which justifies the choice of an ARARMAX model as well
as the choices of n2 and n3 for the identification.

The poles estimated in each Monte Carlo run are plotted
in fig. 1a for the complete ARARMAX system. They
coincide with the poles of the stochastic subsystem. The
uncertainty of the poles −0.9615±0.1313i, that are excited
by the stochastic subsystem only, is clearly larger than for
the other two poles. When the poles of the deterministic
subsystem are determined as the eigenvalues of Â22, as in
fig. 1b, a loss of accuracy is observed. This is due to the
fact that Â23 and Â32 are nonzero for finite , as explained
in section 5.6. Only B̂3 is exactly zero for finite .

The zeros of the deterministic subsystem, estimated as
the eigenvalues of Â22 − B̂2D̂−1Ĉ2, are plotted in fig. 1.
Although on average the zeros, estimated in each Monte
Carlo run, are close to the true values, they have a large
variance error.
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Fig. 1. Simulation example: all poles (a), deterministic poles (b) and deterministic zeros (c), plotted in the complex
plane. The true values are indicated with crosses, the values estimated in each of the 1000 Monte Carlo realizations
are indicated with dots.

7. CONCLUSIONS

An algorithm was presented for the identification of gener-
alized model structure in state space form. The algorithm
is of the subspace type and consists of two steps: 1) the
nonparametric identification of the impulse responses of
the deterministic subsystem and the output correlations
of the stochastic subsystem and 2) the realization of the
system matrices. The algorithm was shown to be strongly
consistent under classic assumptions. Future research will
concentrate on further improving its finite sample be-
havior. A simulation example was used to illustrate the
performance of the method on the identification of an
ARARMAX system. Despite the relatively low SNR, the
poles were accurately estimated, while the zeros of the
identified deterministic subsystem showed a large variance.

The proposed algorithm can be very efficiently imple-
mented using the LQ decomposition, were the compu-
tation of the Q factor can be completely avoided. Due
to space limitations, implementation details will be given
elsewhere.
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