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The work in this note is based on the results given in [1].

1 The VARX predictor

Consider that the dynamics of the system to be modelled can be written in the following
minimal state-space model in the innovation form:

S{ Tht1 = Az + Bug + Key,

yr = Cxyp + e, (1)

where z;, € R”, u;, € R”, y;, € R, are the state, input and output vectors, and e; € R
denotes the zero-mean white innovation process noise over a time k = {0,..., N —1}. The
state-space matrices A € R™*" B € R™" C € R*" D e R’ and K € R™ ¢ are also
called the system, input, output, direct feedthrough, and Kalman gain matrix, respectively.
Let the state-space model in (1) be rewritten in the Kalman predictor form as:

{ Trr1 = Az + Bz, 2)

ye = Cap + ek,
with A= A— KC, B = [B K| ,and 2z = [uf y,ﬂT Considering a finite representation

up to a past window p, then the power series description of the forward VARX model becomes:

]T

P
Y = ZEp,jzk—j + ek, Ej = CA’B, (3)
j=1
where Z, = [y, -+ Epp] is the set with the forward Markov parameters. We also consider
the power series description of the backwards VARX model:
—p
Yk =Y Opjzkj+ T, (4)
j=—1
where ©), = [01, -+ ©,p] is the set with the backward Markov parameters.
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2 The Yule-Walker equation

Rewriting (3) and (4) gives:

p
Izk - Z Epyjzk_j = €k, (5)
j=1
—Pp
Tz, — Z Op,—jZk—j = Tk (6)
j=—1

where 7 = [O 1]. Multiply both sides with Zl{—t and t € N gives:

p

T = T T
Tzpz_y — Z =Rk Ak —t4j = CkZl—t» (7)
Jj=1
-p
T T _ .. .T
Tapzpy — Z Op,—j2kZk—t4j = ThZk—t- (8)
j=—1

By taking the expectance gives:

p
I — Y Epjtj =B}, t=0
=1
o _ 9)
Tor— 3 Epjbe—5=0, t#0

J=1

—p
Ior— Y Op_jpr—j = Eg, t=0
j=—1
" (10)
Ior— 3 Op—jdr—; =0, t#0
j=—1

where ¢ = E [zkzlzlt], EIJ: =E [ekef] and Eg =E [rkrﬂ. These equations can be rearranged
in the lifted block-Toeplitz matrix equations, the so-called Yule-Walker equations:

b0 d-1 - Dy
T - - —Sp) | fbo O :[Eg 0 - 0} (11)
Q;p ¢p—'1 Q;O
®,
b0 -1 - O—p
0 - O T |7 NP0 B
si;p ¢p;1 <Z;0

®p
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3 The Levinson-Durbin algortihm

Assuming we know the jth order predictor, the following relation exists for the (j 4+ 1)th order

solution: ; ;
A —Ejl —Ejj 0:| E 0 --- 0 A
) R @ ir] = ]+1 (13)
0 —@jyj _@j,l |7 A?—H 0O --- 0 Ej’
where
J
Al =0 =) s (14)
=1
A]-H —(j+1) Z @j,—z¢] —i—1 (15)
1=—1

By introducing R;:Ll = (FE ) lAb_H and RY 1= A]H(E )~!, which are the forward and

backward reflection coefﬁcients, we can introduce zeros into the positions of A? 41 and A;-C 41

b - -
f: B [I —Zj1 o —Ejj O]q),_H
-(Ry, )" T |0 -©5; - —©51 I]
1 —Zjt11 0 TEirl TEelg+l
= 7 ! I @, 16
[@j+1,j+1 —Ojr1; o =51 z ok (16)
f
B[, 0 0 0
0 0 - 0 E2,
where
El,, =Bl - A (E) <A )T (17)
G+l = Jj+1 Jj+1
T
E?—i-l <A]+1> (£ ) 1A;+1 (18)
Note, that it can be shown that:
AjJrl:A 1—AJ+1 [ekrﬂ. (19)

Eliminating the covariance matrix ®,41, leads to the following Levinson-Durbin (Lattice)
recursions as:

b
§ . R]+1 [ =il —J,J O]:
(R I |lo —ey - —e; T
( J+1) ~ JyJH il (20)
[ z —Ejr11 o —Ejry —:j+17j+1]
Ojt1j+1 —Ojr1; - =641 7

There are two ways to calculate the reflection coefficients. The first method, called “sam-
ple covariance method”, uses the equations (14-15) and (17-18) to calculate the reflection
coefficients, where ¢, is replaced by its estimate:

R 1 N-1
¢t e m ; Zkzlz;_t (21)
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The second method, called “prediction error method”, provides a practical way of the coeffi-
cients by replacing the expected values by time-averages:

[ N1 -1 ;| N
Y T T
k=0 k=1
- 22
[ N L V-1 -1 (22)
b T T
R, = N_1 Z ek,jrk—l,j] [NZ Tkﬂjrk,j]
L k=1 k=0
The first reflection coefficients can be computed directly from the data as:
B -1 L Nl
R{ =y zkz,?] [N 7 Z zkz,;pl]
L™ k=0 k=1
23
[ Nl L V-1 -1 (23)
Bi= |y Zkz?fl] [N s ]
L k=1 k=0
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