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Abstract. Old and recent experiments show that there is a direct response to
the heating power of transport observed in modulated ECH experiments both in
tokamaks and stellarators. This is most apparent for modulated experiments in
the Large Helical Device (LHD) and in Wendelstein 7 advanced stellarator (W7-
AS). In this paper we show that: 1) This power dependence can be reproduced
by linear models and as such hysteresis (in flux) has no relationship to hysteresis
as defined in the literature; 2) Observations of "hysteresis" (in flux) and a direct
response to power can be perfectly reproduced by introducing an error in the
estimated deposition profile as long as the errors redistribute the heat over a
large radius; 3) Non-local models depending directly on the heating power can
also explain the experimentally observed Lissajous curves (hysteresis); 4) How
non-locality and deposition errors can be recognized in experiments and how they
affect estimates of transport coefficients; 5) From a linear perturbation transport
experiment, it is not possible to discern deposition errors from non-local fast
transport components (mathematically equivalent). However, when studied over
different operating points non-linear-non-local transport models can be derived
which should be distinguishable from errors in deposition profile. To show all this,
transport needs to be analyzed by separating the transport in a slow (diffusive)
time-scale and a fast (heating/non-local) time-scale, which can only be done in
the presence of perturbations.
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1. Introduction

Experiments in 1988 at the tokamak de Fontenay-
aux-Roses (TFR) performed by the FOM ECRH
team showed that electron transport in fusion plasmas
can have a fast response to applied heating power
[1], which is much faster than the settling of the
temperature profiles. This important observation has
been extensively studied and is known as ballistic
transport [2]. In Wendelstein 7 advanced stellarator
(W7-AS), this led to the concept of hysteresis in the
gradient heat flux relationship (qe − ∇ρTe) originally
introduced in the 1990’s by Stroth et al. [3]. The
importance of studying this concept in detail is
shown in [4, 5] where the degradation of confinement
with power are directly related through the power
dependence of the diffusion coefficient. Moreover, this
observation seems to be directly linked to many so-
called non-local observations such as the concept of
missing power and the fast response of the plasma
observed when applying several cold pulse techniques
[6]. Although recent simulations suggests that it can
also be explained by local transport mechanisms [7].
Based on these studies, the concept of hysteresis could
be partially coupled to observations in tokamaks [5, 8].

In this decade (10’s) important new experiments
and analysis performed in the large helical device
(LHD) have renewed the interest in the dependence
of transport on power by directly calculating the
time evolution of the heat flux against the spatial
temperature gradient for a block-wave modulation
assuming a standard heat equation. This showed a
Lissajous curve which resembles a hysteresis-like time
evolution [9].

Recently (2016), experiments at LHD performed
in the same regime as the previous discussed
phenomena showed that the response to a ECH
perturbation is nearly linear [10], where linearity
means that the superposition property (additive and
homogeneity) is fulfilled. The result in [10] is consistent
with previous results at W7-AS and other machines
[11, 12]. This seriously questions the conclusions that
the phenomenon is hysteresis, which is a strongly non-
linear phenomenon [9]. Therefore, in this paper we
will show that the observed hysteresis-like behavior
is not actual hysteresis but is either the result of an
error between the deposition profile used to calculate
the heat flux and the actual deposition profile or
the result of a projection in the qe − ∇ρTe plane

of a two-dimensional dependence of the heat flux on
both ∇ρTe and the modulated input power as was
implied by [5]. The observed phenomena can also be
a combination of both. This fits perfectly with the
linearity of perturbative experiments as observed in
many experiments [12].

The power dependency of the diffusion coefficient
[5] and corresponding Lissajous curves is one possible
approach to address the fast transport. There are also
other possible extensions which have been suggested
in the literature to incorporate this fast transport.
One example is by making the diffusion coefficient
time dependent [13]. Interestingly, its linearization
results in a similar power dependence as derived here
[5]. Moreover, there are other approaches in which the
models are adjusted such that they can incorporate a
non-local diffusivity, e.g., through a fractional diffusion
model [14, 15] and using a two-field critical gradient
model that couples a heat equation to an evolution
equation for the turbulence intensity [16]. We will not
analyze these models as we try to build a heat flux
model based on experimental observations.

Based on the linearity observation, the heat
flux model is reformulated showing that the heat
flux contribution is directly related to fast transport
mechanisms (non-locality). These are mechanisms
which transport heat on a time-scale much faster than
the diffusive time-scale, i.e., on the time-scale of the
power modulation less than 1 ms.

There are strong indications that turbulence is
the dominant physical mechanism driving this fast
transport [5, 9, 17], especially since a similar Lissajous
curve is observed in the measurements of micro-
density fluctuations [9]. However, based on the here
discussed perturbative experiments only, it is not
possible to distinguish between the different physical
mechanisms which drive the fast transport. Moreover,
errors in the deposition profile are mathematically
indistinguishable from the fast transport components
when only analyzing the temperature. Hence, we will
not discuss them in detail in this paper. Instead, we
will show how the power dependence of the combined
fast mechanisms and deposition errors can be extracted
from the heat flux allowing to build transport models
which capture this fast transport component. To
do this, heat flux dependence on fast transport will
be rewritten in terms of a mapping from deposition
profiles. As this mapping should be independent of
the perturbation and deposition profile used, it offers
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a path to quantify and predict the combined fast
transport and deposition errors in the future. As the
fast transport effectively acts as a redistribution of
power as has been observed in [18, 19, 2], it also reduces
the spatial decay of the amplitude and phase profiles
and consequently biases the estimates of transport
coefficients.

The goal of this paper is not to describe specific
transport mechanisms but to develop a model structure
in which the possibly different (physics) mechanisms
can be captured and distinguished. Finally, as the term
hysteresis is not appropriate to describe the heat flux
dependence on power, we will use the term Lissajous
curve to describe the observations in the q − ∇ρTe
plane, even though the term Lissajous curve is not
entirely correct as it is a term reserved for sinusoidal
modulations [20].

This paper is organized as follows. Sec. 2
introduces the basic concepts such as the transport
model (heat equation), the estimation procedure of the
heat flux, and shows why perturbative experiments
are generally linear. Sec. 3 presents simulations and
analytical calculations to show that it is not possible
to have the observed Lissajous curves on total power
errors, but a wide broadening of the deposition profile
is necessary. Sec. 4 discusses, analyzes, and extends
the different models to describe the (non-local) power
dependency of the heat flux in W7-AS and LHD. These
set the basis for a combined transport model reached in
Sec. 5. Showing that some transport contributions can
be discerned. Moreover, this section discusses several
mechanisms that can explain the observations in the
literature. Finally, the results are briefly summarized
and discussed.

2. Heat flux reconstruction using perturbative
heat pulse experiments

In this section is explained how the (perturbative) heat
flux is attained from perturbative measurements using
the heat equation. Moreover, we will show that the
perturbations used in the experiments to observe the
so-called "hysteresis in flux" can be considered linear.
This will be used in the next section to reproduce the
so-called "hysteresis in flux", which we will refer to as
Lissajous curves a term also used in the caption in [9,
Fig. 5].

2.1. Direct calculation of the heat flux

In most transport studies the heat equation (first law of
thermodynamics) is used to study (electron) transport
in both tokamaks and stellarators [12], i.e.,

∂

∂t
(neTe (ρ, t)) = ∇ρ (−qe (ρ, t)) + P (ρ, t) , (1)

where Te (ρ, t) is the (electron) temperature, ρ the
(dimensionless) spatial coordinate, ne the (electron)
density, and P (ρ, t) the heating power density, which
depends on both the time and the radial distribution.
The heat equation (1) defines the heat flux we study in
experiments. Therefore, in [21] and [9], it is proposed
to calculate directly the heat flux qe by re-expressing
the heat equation (1) in terms of qe. The difference
between the approach proposed in [21] and [9] is that
in [21] all different power contributions are taken into
account whereas [9] tries to take only the perturbative
component into account (in the actual calculation in
[9] static terms seem to be also considered). In this
paper, we follow the calculation as proposed in [9].
Therefore, only the heat flux change due to a change
in ECH heating power will be considered such that
transport can be considered around an equilibrium.
Then, a heating power perturbation can be expressed
as P (ρ, t) ≈ P0 (ρ) + P̃ (ρ, t), which induces a
perturbation in the temperature Te (ρ, t) ≈ T0 (ρ) +
T̃e (ρ, t) and in the heat flux qe (ρ, t) ≈ q0 (ρ)+ q̃e (ρ, t).
The quantities P0 (ρ) , T0 (ρ), and q0 (ρ) denote the
(static) equilibrium profiles, which are linked such that
they satisfy (1) in steady state. P̃ (ρ, t) , T̃e (ρ, t),
and q̃e (ρ, t) denote the perturbations around this
equilibrium. Considering only the perturbed quantities
(1) simplifies to

∂

∂t

(
neT̃e (ρ, t)

)
= ∇ρ (−q̃e (ρ, t)) + P̃ (ρ, t) . (2)

The next step is determining the perturbative heat flux
from this equation. Therefore, the expression in [9] is
formulated in the cylindrical coordinate system using
a notation consistent with this paper, i.e.,

q̃e (ρ, t) = −1

ρ

∫ ρ

0

ρ?
(
∂

∂t

(
neT̃e (ρ?, t)

)
− P̃ (ρ?, t)

)
dρ?,

(3)
q̃e (ρ, t) describes the change of qe (ρ, t) due to a
perturbation P̃ (ρ, t). Note that in practice the
difference in using Te or T̃e and P (ρ, t) or P̃ (ρ, t) is
an offset in the absolute value of the heat flux, both
vertical and horizontal. However, using Te or P (ρ, t)
does not modify the shape of the Lissajous curve itself.
Moreover, we have omitted the 3/2 term as it has no
impact on the discussions.

The main question is now are the perturbations
under experimental conditions small enough such that
(2) can be considered linear and consequently also the
so-called "hysteresis in flux" observations.

2.2. Perturbative experiments generally result in
linear perturbations

The fundamental idea of perturbative experiments is
to have a sufficiently small perturbation such that the
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resulting response can be considered linear [22]. For
the experiments in which the so-called "hysteresis in
flux" behavior (Lissajous curve) is observed (mainly
stellarators), we conclude that this linearity condition
has been largely satisfied based on the following
scientific evidence:

(i) In W7-AS the two-tone linearity test, i.e., the
existence of intermodulation frequencies induced
by non-linearities, showed no sign of a non-
linearity [11].

(ii) In LHD under similar conditions as the observa-
tions in [9], the two-tone linearity test showed
only a weak non-linearity, which was 1 ∼ 2 or-
ders smaller than the main perturbation compo-
nent [10].

(iii) Step responses at W7-AS show that at some
distance to the deposition profile the temperature
responses are linear and close to the deposition
profile the temperature responses are non-linear
[23]. As such at some distance to the source the
linearity condition is satisfied.

(iv) The P dependence of χe as reported in [24,
Fig. 11] is a smooth function of P ∼ P 0.6, i.e.,
linearizable.

(v) The qP (P ) dependence shown in [9, Fig. 6] is also
smoothly decreasing when the power decreases.

(vi) According to [12] "there is overwhelming evidence
in the literature that the response of the plasma to
a perturbation is linear or nearly so" for transport
experiments.

From the observations in LHD and W7-AS, we
conclude that although some non-linearities are
detected, the so-called "hysteresis in flux" behavior
originates from a dominantly linear behavior as the
non-linearities found are only present close to the
deposition location and are very weak outside this
region. Moreover, the smooth dependence on P of
transport (v) also implies that there exists a sufficiently
small perturbation for which the transport can be
modeled fully linear.

Conclusion Observed "hysteresis in flux" behavior
(Lissajous curves) must be reproducible by a linear
model

Consequently, from the literature we conclude that
T̃e (ρ, t) and q̃e (ρ, t) can be considered as a linear
response to a ECH perturbation P̃ (ρ, t). This is a
crucial step in the analysis as the transport phenomena
that can reproduce the Lissajous curves must be
reproducible by a linear model (as we will show in
the next section). In this paper, we discuss two
possible explanations for the observed Lissajous curves:

a) errors in the estimation of the deposition profiles
results in errors in the heat flux reconstructions; and
b) a direct non-local dependence of transport on the
heating power by connecting various models found in
the literature.

3. Apparent instantaneous transport due to
errors in the estimation deposition profile

The previous section infers from the literature that
the observational part in perturbative experiments are
dominantly linear. Hence, one of the explanations
suggested in the literature to explain a direct
dependence of transport on heating, is a deposition
profile which is much broader than expected from ray-
tracing calculations [11, 18]. Hence, we study the
following proposition:

Proposition If a simulated error in the deposition
profile estimate can reproduce the experimentally
observed Lissajous curves, then such errors must,
at least partly, contribute to the experimentally
observed Lissajous curves

The consequences of errors in the estimation of
the deposition profile, i.e., errors in ray-tracing
calculations, will be investigated in this section.

3.1. Methodology and simulation design

That an error can be responsible for the experimentally
observed Lissajous curves can be shown by introducing
such an error in a simulation. Therefore, we simulate
(2) in cylindrical coordinates

ne
∂T̃e (ρ, t)

∂t
=

ne
1

ρ

∂

∂ρ

(
ρχe

∂T̃e (ρ, t)

∂ρ

)
+ Pech (ρ, t) Ũ (t) , (4)

where the real deposition profile Pech (ρ) and the time
dependent part Ũ (t) have been separated. In this case,
Ũ (t) is a symmetric block-wave with a modulation
frequency of 25 Hz. The boundary conditions for this
simulation are∇ρT̃e (0, t) = 0 and T̃e (1, t) = 0 (a = 2.2
[m] (ITER geometry), ρ = r/a, r is the radius in [m]).
Both the electron density ne = 2.1 · 1019 [m−3] and
the electron heat diffusion coefficient χe = 8 [m

2

/s]
are chosen homogeneous for tractability of the results.
Choosing non-homogeneous profiles for χe and ne will
not change the outcomes of the analysis. Note that
the ∇ρ−operator is used, simplifying the notation, to
denote the spatial derivative ∂/∂ρ. Three different
simulations are performed using different deposition



Separation of transport in slow and fast time-scales using modulated heat pulse experiments(hysteresis in flux explained)5

0 0.1
0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1. Deposition profiles used to simulate temperature
profiles and deposition profile used to estimate the heat
flux. The simulated deposition profiles use following values
Pech (ρ) = Pdep (ρ, 0.7, 0.05) (blue), Pdep (ρ, 0.7, 0.55) (black).
The deposition profile used to estimate the heat flux is given by
P̂ (ρ) = Pdep (ρ, 1, 0.05) (red).

profiles all using following parameterization

Pdep (ρ, α, σ) = α · Pm ·
1

σ
√
π

exp

(
− (ρ− ρdep)2 a2

σ2

)
.

(5)
The deposition profile Pdep (ρ) is defined by a Gaussian
function where Pm = 0.7 [MW/m2], ρdep = 0.1 the
center of deposition, and the dispersion σ [m]. Then,
(4) is simulated using an explicit finite difference code
[25]. As ρ does not have a unit, it is multiplied by a.

The deposition profile used to estimate the heat
flux is called P̂ (ρ) such that P̃ (ρ, t) in (3) is defined
as

P̃ (ρ, t) = P̂ (ρ) Ũ (t) . (6)

Fig. 1 shows both the deposition profile used to
estimate the heat flux is called P̂ (ρ) and those that
are used to simulate the temperature profiles Pech (ρ).

In practice, first (4) is simulated by setting α and
σ in (5). The heat flux is then calculated using (3)
and (6) where for Pdep a different α and σ are used.
In other words, in these simulations, at the deposition
location in (4), a difference in α means that part of
the energy has never reached the plasma, known as
’missing power’ [6], and a difference in σ that energy is
deposited at a different spatial location than expected.

3.2. Lissajous curves based on deposition estimation
errors

This section shows that the experimentally observed
Lissajous curves can be reproduced using an error
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Figure 2. Time evolution of the heat flux q̃e versus ∇ρT̃e at
radial location ρ = 0.6 based on broadening . The Lissajous
curve further away from the source at ρ = 0.6 with χ = 8 [m2/s].
The deposition used to simulate is Pech (ρ) = Pdep (ρ, 0.7, 0.55)

and to estimate P̂ (ρ) = Pdep (ρ, 1, 0.05). Both can also be found
in Fig. 1. To calculate the diffusion coefficient multiply the slope
by a = 2.2. Notice its resemblance to [9, Fig. 5].

in the deposition profile as is shown in Fig. 2. To
understand this, first we split (3) used to calculate the
heat flux into two components, i.e.,

q̃e (ρ, t) = q̃∂T/∂t + q̃P , (7)

where the heat flux contribution directly related to the
temperature is given by

q̃∂T/∂t (ρ, t) = −1

ρ

∫ ρ

0

ρ?ne
∂T̃e
∂t

dρ? (8)

and that of the heat source by

q̃P (ρ, t) =
1

ρ

∫ ρ

0

C · ρ? · P̂ (ρ?) Ũ (t) dρ?. (9)

The constant C = 6.24 · 1024 is the conversion factor
from [MWm−3] to [keVs−1m−3]. As Ũ (t) is a block-
wave, q̃P will also be a block-wave function because
the integral in (9) is only applied over the spatial
coordinate ρ? and not over time. Consequently, in
case P̂ (ρ) = Pech (ρ) the discontinuities introduced
by the block-wave modulation at the ECH turn on/off
moment and location, need to be canceled out by a
discontinuity in ne∂T̃e/∂t such that q̃e versus ∇ρT̃e
results in a line with slope the diffusion coefficient.
Hence, the assumed heat flux model (4) is exactly
reproduced as is shown in Fig. 3 (validation). However,
if there is a difference between P̂ (ρ) and Pech (ρ),
the discontinuities in P̂ (ρ) and ne∂Te/∂t no longer
cancel each other out resulting in a discontinuity in
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Figure 3. Time evolution of the heat flux q̃e versus ∇ρT̃e at
radial location ρ = 0.6 when there is no difference between the
estimated and used deposition profile where χ = 8 [m2/s]. The
deposition profile used to simulate and estimate is Pech (ρ) =

P̂ (ρ) = Pdep (ρ, 1, 0.05). Both can also be found in Fig. 1. To
calculate the diffusion coefficient multiply the slope by a = 2.2.
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Figure 4. Time evolution of the heat flux q̃e versus ∇ρT̃e at
radial location ρ = 0.6 based on a total power error only. The
Lissajous curve further away from the source at ρ = 0.6 with
χ = 8 [m2/s]. The deposition used to simulate is Pech (ρ) =

Pdep (ρ, 0.7, 0.05) and to estimate P̂ (ρ) = Pdep (ρ, 1, 0.05). Both
can also be found in Fig. 1. To calculate the diffusion coefficient
multiply the slope by a = 2.2.

q̃e. Depending on the difference between P̂ (ρ) and
Pech (ρ), the discontinuity will occur at different time
instances. Thereby showing that a deposition error
over a very broad profile is necessary. This is shown
in Fig. 4 and Fig. 2. Note that all the corresponding
Lissajous curves are color coded according to the color
coding used in Fig. 1.
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Figure 5. Time evolution of the heat flux q̃e versus ∇ρT̃e
at radial location ρ = 0.1 based on a total error only where
χ = 8 [m2/s]. The deposition used to simulate is Pech (ρ) =

Pdep (ρ, 0.7, 0.05)and to estimate P̂ (ρ) = Pdep (ρ, 1, 0.05). Both
can also be found in Fig. 1. To calculate the diffusion coefficient
multiply the slope by a = 2.2.

Fig. 4 shows already some similarity to experimen-
tally observed Lissajous curves [9, Fig. 5]. However,
the discontinuities occur at different time instances
as observed experimentally. It has excursions, the
points 04-11 and 14-01 outside the closed loop. In
other words, the moment q̃∂T/∂t (ρ, t) switches is de-
layed with respect to when q̃P (ρ, t) switches. This de-
lay can be quantified by the time that has passed be-
tween number 4 and number 11 (and number 14 to 01),
which corresponds to 14 [ms]. Equivalently, the delay
is the moment the curve changes direction in this case
between 01 and 07 and 11 and 18. This is approxi-
mately one third of the period (25 Hz) with a distance
of ∆ρ ≈ 0.55 [-] to the source in cylindrical geometry.
However, this is precisely what is not being observed
in the experiments at these spatial locations. Hence,
to be able to reproduce what is experimentally is ob-
served, this delay needs to be removed. An analytic
calculation of the delay in slab-geometry can be found
in Appendix B.

Therefore, consider the estimate of q̃e (ρ, t) at a
smaller radius first ρ = 0.1, which is shown in Fig. 5.
Then, we see almost an exact representation of the
experimentally observed Lissajous curves. However,
as we also observe this at larger radii, it means that
a heating term must be present all radii. This has
been simulated in Fig. 2 perfectly reproducing the
experimental Lissajous curves in [9, Fig. 5].

Conclusion Errors in the estimation of deposition
profile can reproduce the observed Lissajous curves
only when there is a very broad deposition profile
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This means that when redistributing heating power
over the entire domain reproduces the Lissajous curves
modeled in [24] and observed in experiments [9]
exactly. This can also be further analyzed by plotting
q̃∂T/∂t (ρ, t) and q̃P (ρ, t), separately, as is done in
Fig. 6. As (7) shows the sum of q̃∂T/∂t (ρ, t) and
q̃P (ρ, t) should be exactly zero in case there is no
redistribution or missing power. However, if there is
a height difference between q̃∂T/∂t/ne (∆q̃∂T/∂t/ne)
and q̃P /ne (∆q̃P /ne), the resulting Lissajous curve
of q̃e/ne opens up in Fig. 2, i.e., ∆q̃e/ne 6= 0. In
which direction the Lissajous curve opens up (direction
of rotation) depends on the radial location and on
the amount of missing power and/or non-absorbed
power. The heat flux contribution due to q̃P /ne will
simply be a block-wave function, which appears as a
square with a clockwise rotation in Fig. 6(a). Hence,
the opening can be fully attributed to a difference
between what is assumed as heating deposition profile
and what the slow (diffusive) transport considers to be
the deposition profile later called the effective heating
deposition profile Peff .

The Lissajous curve based on the heat source
in Fig. 6(a) has a remarkable resemblance to [9,
Fig. 7], the so-called "hysteresis in turbulence"
[9]. However, Fig. 6(a) has again nothing to
do with hysteresis. It is merely a block-wave
plotted against a function which changes direction
at the same moment (sign (∂ (∂Te (ρ, t) /∂ρ) /∂t) =
sign (∂P (ρ, t) /∂t)). Hence, the so-called hysteresis in
turbulence [9] is merely a block-wave as can be seen in
[9, Fig. 3, An] plotted against ∂Te/∂ρ. However, what
is remarkable is that the turbulence level is switching
with heating power and not changing as function of
∂Te (ρt) /∂ρ, which suggests that the Lissajous curves
observed in q̃e (ρ, t) are not merely the result of an error
in the ray-tracing.

3.3. Time-scale separation

In this section, we show that it is possible to split
transport in a slow and fast time-scale. This can be
best understood by increasing the diffusion coefficient
(slow time-scale), thereby showing that the fast time-
scale cannot be reproduced by changing the diffusion
coefficient. This is shown in Fig. 7 where the diffusion
coefficient has been increased to χ = 100 [m2/s].

Although the shape of the Lissajous curves are
very similar to those observed in [9, Fig. 5] and Fig. 2
the slopes are very different. In [9, Fig. 5] the slope is
approximately χ = 8 [m2/s] and not χ = 100 [m2/s] .
In other words, the slow transport component related
to the slopes in the Lissajous curves will be modified.
Moreover, increasing the transport coefficients yields
also a number of problems in the time evolution of Te,
∇ρTe, and ∂Te/∂t, as they will become much larger

than observed in experiments (not shown here). Hence,
this brings us to an important conclusion that the
slow time-scale of transport (in a linear sense) cannot
be used to reproduce the observed Lissajous curves.
Therefore, a fast time-scale is necessary, which is here
an instant (static) error on the deposition profile used
to calculate the heat flux. Hence, transport can be
split in two components as is presented in Fig. 8. The
crucial question is if such broad deposition profiles are
feasible. In other words, are ray-tracing predictions
so far off. Although we cannot exclude such broad
deposition profiles, there is an alternative explanation
through the use of non-local models, which we will
show to have exactly the same mathematical structure
in a linear sense as presented in Fig. 8.

4. Non-local dependence of transport

This section discusses two different local dependencies
of the heat flux qe proposed for stellarators, including
some extensions. As will be shown these also reproduce
the Lissajous curves in [9, Fig. 5] and Fig. 2.
The non-local models discussed in this section are
based on indirect measurement observations and direct
calculations of the heat flux qe.

4.1. Non-local based transport models in stellarators
(literature)

The common heat flux model proposed to incorporate
power dependency and power degradation in W7-AS is
based on an electron diffusivity χe being dependent on
the power. This results in the following model for the
electron heat flux [24]

qe = −neχe (P )∇ρTe. (10)

This model is based on a number of important
observations in W7-AS:

(i) The step response for an up- and downward step
in P is different implying different values for χe
for different power levels [4].

(ii) Dependencies of χe on Te are excluded and a
dependency of χe on (∇ρTe)α for α > 0.5 is also
excluded [24].

(iii) χe dependence on P is in accordance with the
scaling law dependencies of the confinement time
τe on P (χ ∼ P 0.6) [4].

(iv) χe calculated in steady-state
(
χPBe

)
is similar to

the one calculated using a perturbation
(
χHPe

)
for

a specific power level [5].
(v) Both χPBe and χHPe depend on the input power for

both off-axis and on-axis deposition profiles [1, 24].
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Figure 6. Lissajous curves of the heat flux (a) q̃P (ρ, t) (b) q̃∂T/∂t (ρ, t) versus −∇ρTe in the case where the deposition used to
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Figure 8. Block diagram showing how the fast (static) time-
scale is affected for an error in the deposition profile.

In LHD the heat flux qe has been estimated by
expressing the heat equation (1) in terms of qe [9].
The resulting qe − ∇ρTe Lissajous curve in [9, Fig.
5] suggests that the diffusion coefficients are the same
when the power is on or off, i.e., the slopes are the same
when the power is constant. The modeling in [26][27,
eq. 6]

qe = qjump − neχe∇ρTe, (11)

is based on this observation, where qjump is an
artificially introduced quantity to explain the jumping
of the heat flux when the heating power is turned on or
off and is interpreted as non-linear hysteresis behavior
[9, 27]. As a consequence, this model does not take
the heating power dependence of qjump explicitly into
account (see also section 2.2 in [28]).

The observational model in (11) is different from
(10) in that it shows 1) that the ’slow’ slopes in the
qe − ∇ρTe plane are equal instead of changing with
power levels; and 2) that there is an extra variable
qjump, which needs to be taken into account.

Concerning the type of discharges discussed here,
it is important to mention that for both W7-AS and
LHD they are low-density discharges [4, 9]. However,
there are also strong indications that such observations
are not limited to low-density plasmas only. Also
important to mention is that the here discussed
observations were made in both plasmas with only
EC heating (W7-AS) and plasmas dominated by NBI
heating (LHD) [4, 9].

Finally, the reason why other non-local models
have not been discussed here is that they often try to
model a non-local diffusivity, e.g., through a fractional
diffusion model [14, 15]. However, as the observations
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in LHD clearly show the diffusion coefficients (slopes)
are hardly affected, it is unclear how these would fit in
the context discussed here.

4.2. Extended heat flux model

Here, the two models in (10) and (11) will be unified
and its implications are discussed. The first step is
to go from an observational qjump to a descriptive
dependency of the heat flux. First of all, qjump in
[9, Fig. 6] depends on the change of the input power
P . Hence, we replace qjump by qP (P ) in (11). This
extension gives the heat flux model more generality as
this model can also be used to describe other power
modulation wave-forms such as sinusoidal and ternary
modulations, whereas qjump is limited to block-wave
modulations.

It is unclear whether χe should be made dependent
of P in the joint model of qe. On one hand, the χe
dependence on P is supported by the observations at
W7-AS and static predictions at both LHD [29] and
TJ-II [30, 31]. On the other hand, the LHD observation
in [9, Fig. 5] does not show such a dependence.
However, new experimental results show that such a
dependence may exist [32]. Hence, the dependence of
χe on P remains an open question to be resolved but
for completeness we have included this dependence in
the overall non-linear heat flux model

qe (ρ, t) = qP (ρ, P (·, t))−neχe (ρ, P (·, t))∇ρTe, (12)
where qe (ρ, t) is a function of the whole power density
profile P (·, t) not the local ρ. Hence, the (·, t) symbol.
An example is the following arbitrary dependency of
qP (ρ, P (·, t)) on ρ

qP (ρ, P (·, t)) =

∫ ρ

0

g(ξ)P (ξ, t)dξ, (13)

where, even when P (ξ, t) at ξ is zero, qP (ρ, P (·, t))
is non-zero. In other words, qP (ρ, t) at a specific
radial coordinate ρ does not (only) depend on the
value of P (ρ, t), but on the entire deposition profile
P (·, t). The same holds for χe (ρ, P (·, t)). The
spatial dependence of χe (ρ, P (·, t)) on P (ρ, t) and
qP (ρ, P (·, t)) on P (ρ, t) can be different. Also, it
is important to mention that the discussion in [33]
concerning so-called missing power also suggests that
(10) should be extended with qP , where missing power
is defined as the difference between the total power put
into the plasma and total power measured inside the
plasma. In [33] it is described that an energy balance
analysis at W7-AS showed that only 30% of the so-
called missing power can be recuperated by a power
dependence of χe. qP is a mechanism to explain this
so-called missing power.

Fig. 9 shows the dependencies of qe on P and
ne∇ρTe for (12) using a power dependence of χe ∼ P 0.6

and qP ∼ P 0.5 similar to scaling law dependencies
[24]. The symmetric block-wave modulation is shown
in Fig. 9(b) where the blue and red dots show the
points where power steps occur and the black dots
show the slow evolution. Fig. 9(a) shows the non-
linear dependence of qe on P and ne∇ρTe and how
qe changes under influence of a symmetric block-wave
power modulation. The surface of qe is smooth and
the evolution over the surface differs depending on how
the input P is chosen. A step occurs in the power
in case a symmetric block-wave modulation is used at
the locations that the power is turned on or off. This
must also occur on the 2D-plane in Fig. 9(a). After the
heating has been turned on, P stays the same and as
such the profiles evolve on a slow time-scale according
to χHP+ until the point the heating is turned off again.
Then, a slow evolution according to χHP− occurs. Note
that, in case of the LHD observations it is suggested
that χHP− and χHP+ are the same [9].

In Fig. 9(c) the projection of this 2D-dependence
in the qe − ∇ρTe plane is shown. This results in
the Lissajous curve as has been presented in [24, Fig.
17], observed in [9, Fig. 5], and which have been
simulated in Fig. 2. Depending on the sensitivity of
qP on P and χe on P , the size of the vertical step
will be changing in Fig. 9(c). Moreover, the χe (P )
dependency will determine how much the slopes will
be changing. Fig. 9(d) shows the projection in the
qe − P plane, which shows a similar Lissajous curve.
The projection in Fig. 9 also implies that if P is
not stepping, but for instance is a sinusoid, then the
Lissajous curves will look entirely different. In the
case of a sinusoid, the Lissajous curves will become
ellipsoids (not shown here). This also holds for Fig. 2
as there are no steps in a sinusoid. Hence, showing the
equivalence between assuming a fast component in the
heat flux and a broadening of the deposition profile.

4.3. Perturbative experiment and linearized heat
transport model

As the dependence of qP (ρ, P (ρ, t)) and χe (ρ, P (ρ, t))
on P (ρ, t) are unknown, a generalized derivative is
used known as the Fréchet derivative [34, Def A.s.25].
Hence, the linearized heat flux model for q̃e(ρ, t) of (12)
is given by

q̃e(ρ, t) =

((
∂qP
∂P

(·, P0)

)(
P̃
))

(ρ, t)

−
((

∂χe
∂P

(·, P0)

)(
P̃
))

(ρ, t) ne∇ρT0

− χe (ρ, P0(ρ))ne∇ρT̃e. (14)

The full derivation is given in Appendix A including
an example of why we need the FrÃ©chet derivatives.
In [35] also other linear quantities such as convection
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Figure 9. Graphical representation of (12) with (a) Static dependency of the heat flux qe in terms of P and ne∇ρTe based on (12)
with in black the time dependent heat flux evolution due to a symmetric block-wave where the red and blue dots the locations a
step occurs. (b) Symmetric block-wave perturbation where the blue and red the points are the time instances the block-wave steps.
(c) The Lissajous curve of the time evolution of the block-wave, with in red χHP+ and blue χHP− the two different slopes due to the
power dependent diffusivity. (d) The power dependence of the heat flux due to a symmetric block-wave input. The heat flux changes
on a fast time scale with heating power.

and damping appear in the heat equation, which
could also be further extended with other non-linear
dependencies. However, as the observations in [4,
9] give no indication that such terms are necessary
they are not considered here. As (2) describes a
linearized equation, the time and deposition part can
be separated in (14) using

P̃ (ρ, t) = Pech (ρ) Ũ (t) (15)

such that((
∂qP
∂P

(·, P0)

)(
P̃
))

(ρ, t) =((
∂qP
∂P

(·, P0)

)
(Pech)

)
(ρ) Ũ (t) (16)

and((
∂χe
∂P

(·, P0)

)(
P̃
))

(ρ, t) =((
∂χe
∂P

(·, P0)

)
(Pech)

)
(ρ) Ũ (t) . (17)

This allows the heat flux q̃e to be rewritten as

q̃e(ρ, t) = qT (ρ, Pech) Ũ (t)− χe (ρ, P0(ρ))ne∇ρT̃e,
(18)

where

qT (ρ, Pech (ρ)) =

((
∂qP
∂P

(·, P0)

)
(Pech)

)
(ρ)

−
((

∂χe
∂P

(·, P0)

)
(Pech)

)
(ρ) ne∇ρT0. (19)

In the literature various similar (additional) heat flux
contributions appear such as qoffset [12], also called the
heat pinch term qpinch [33], and q1 [6, p. 3]. These
q−terms should not be confused with the term qT
because qoffset, qpinch, and q1 (see references) do not
depend on the power modulation, whereas qT does.
Note that the fast transport component cannot be
explained by critical gradient models, based on the
assumption that turbulent modes are driven unstable
when ∇ρTe exceeds a critical value [17, 36, 37, 38, 39].
The reason is that it only acts on the slow time
scale. However, critical gradients models can impact
the slow transport scale. In such cases the analysis
presented here is valid except for a linearization at the
specific transition point (between slopes). Moreover, in
case χ is considered to be continuously dependent on
∇ρTe the resulting linearization will be the same as in
(18). The reason is that the linearization of χe (∇ρTe)
results in the following two additional contributions:
1) an extra contribution to the equilibrium, which
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we do not consider; and 2) a contribution equal to
χe∇ρT̃e, which has already been included in (18) (see
also [12]). Moreover, as only the electron channel
is directly perturbed and the electron temperature
is studied, interactions with other transport channels
such as the ion temperature are not considered. Note
that only feedback interactions with other channels
can give an additional contribution, i.e., interactions
where P̃ (ρ, t) or the electron transport itself modifies
other transport channels which subsequently modify
the electron transport. As this is an even more
complicated interaction we will not explicitly analyze
it here.

4.4. Re-expressing fast (non-local) transport in
effective deposition profile

This section shows that qT can be mathematically re-
expressed as a new deposition profile. Therefore, the
linearized perturbative heat flux (18) is substituted
back into the heat equation in (2). Then, the time
dependent component Ũ (t) can be separated from qT
resulting in the following heat equation

∂

∂t

(
neT̃e (ρ, t)

)
=

∇ρ
(
χe (ρ, P0(ρ))ne∇ρT̃e

)
+ Peff (ρ) Ũ (t) , (20)

where

Peff (ρ) = Pech (ρ)−∇ρ (qT (ρ, Pech (·))) , (21)

where we define Peff (ρ) as the effective heating profile,
which is a combination of the actual deposition profile
Pech (ρ) and the implicit dependence of the heat flux
on this deposition profile ∇ρ (qT (ρ, Pech (ρ))). This
also shows that if qT is non-zero, qT is perturbed
by the source Ũ (t), which in experiments is much
faster, than the diffusive (and convective) time-scale.
As such it describes fast transport phenomena and
other phenomena directly related to the heating source.
The apparent deposition profile Peff (ρ) is significantly
broader than the real deposition profile as the non-local
heat flux occurring at all radii not only those directly
perturbed by Pech.

Conclusion Experimental Lissajous curves can (also)
be reproduced by non-local models proposed in the
literature

One may debate if it is better to describe Peff (ρ)
directly in terms of a heat flux component qT as
from a physics point of view it is a contribution
to the heat flux and not a physical contribution in
terms of heating power. However, writing it as (21)
gives a dimensionless model description in which the
time-scales effectively are separated and comparable

P̃ (ρ, t) Peff (ρ) Ũ (t)
T̃e (ρ, t)’Local’

χe
∇ρT̃e (ρ, t)

’Non-local’

T
Fast (static) Slow (dynamic)

Figure 10. Block diagram of fast transport component caused
by non-local transport of linearized transport for time-scales on
which the fast transport can be considered static.

to estimates of deposition profiles coming from ray-
tracing. This separation can also be seen in Fig. 10,
where the T symbol is used to depict non-local
transport. The result shows that non-local transport
has exactly the same structure as an error in the
deposition profile when linearized. Both a broadening
of the deposition profile or non-local transport can have
a significant impact on the analysis of transport, which
is explained next.

5. Consequences of fast-time scale effects on
temperature and transport coefficients

In this section, we discuss how a significant fast-
time scale component, be it from an error in
deposition profile or non-local transport or both,
can be recognized in the measurements. Therefore,
we analyze what the effect of the fast component
is on the temperature evolution and the harmonic
components. Moreover, we show that if a fast time
scale component is present, the resulting estimates
of transport components (on the slow time-scale) will
be erroneous if the time-scales are not properly being
separated, which is rarely done in practice.

5.1. Time domain: effect on perturbative temperature
profiles

A fast component in the measurements can be
recognized in temperature measurements by an
absence of delay as explained previously. This means
that where the temperature changes direction does
not change in time. This can be seen by comparing
Fig. 11 without a fast-component and Fig. 12
with such a fast-component. Moreover, the time
evolution of the temperature profiles have become
more straight, i.e., the derivative ∇tTe is not peaking
as much, compared to the temperature evolution
without a fast component. Similar changes can be
observed in the time evolution of ∂Te/∂t and ∂Te/∂ρ.
This straightness and absence of delay can also be
appreciated in the time evolution of experimental data
as presented in [9, Fig. 3]. Moreover, this is also
observed in the responses shown in [4, Fig. 6](W7-
AS), where they are more straight than their associated
diffusion coefficients based on model simulations.
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Figure 11. Time evolution of the temperature at different radial
locations when using Pdep (ρ, 1, 0.05). They have been simulated
with a finite difference simulation using a symmetric block-wave
modulation of 25 Hz, the diffusion coefficient is χ = 8 [m2/s].
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Figure 12. Time evolution’s at different radial locations of the
temperature when using Pdep (ρ, 0.7, 0.55).

Non-local transport or a broadened deposition
profile can also be directly recognized in measurements.
The reason is that the perturbation propagates much
faster in time when having a non-local transport
broadened deposition profile than expected when
having diffusive transport only. Consequently, the
delay between heat waves (or steps) at different radial
locations is small. This is exactly what measurements
show in W7-AS [24, 4, Fig. 6]. Here, the delay between
a step response in Te at a radius 5 cm and at the
radius of 10 cm is smaller than 0.5 [ms] whereas for
χ = 1 [m2/s] a much larger delay is expected if one

only considers diffusion. This delay is equivalent to
the phase of the perturbation as is discussed next.

5.2. Frequency domain: effect on the estimated
transport coefficients

In frequency domain the presence of an E and/or T
component is even more apparent as it will result in
a reduced spatial decay of the amplitude and phase
profiles. This constitutes a problem for the estimation
of transport coefficients given the fact that they
basically all assume a domain on which no additional
heating is present [40, 41, 42]. This effective additional
heating is analyzed here, in terms of the amplitude
and phase profiles and its effect on the estimation of
the transport coefficients.

First, consider the extreme cases of transport
without power deposition (in the domain of estimation)
and a domain with power deposition but without slow-
scale transport (χe = 0). If there is no heating
power on the semi-infinite domain [ρ1,∞) under
consideration, then the spatial decay in slab is given
by [41](see also Appendix B)

Θ (ρ, ω) = exp

(
−
√
iω

χe
(ρ− ρ1)

)
Θ (ρ1, ω) , (22)

where Θ (ρ, ω) = F (Te (ρ, t)) with F denoting the
Fourier transform. On the basis of this simplification
transport coefficients can be calculated using [40, 41]

χA =
1

2

ω

(A′/A)
2 and χφ =

1

2

ω

(φ′)
2 , (23)

where A′/A is the logarithmic spatial derivative of the
amplitude and φ′ the spatial derivative of the phase.
The amplitude and phase as function of ρ in a semi-
infinite domain with constant χe without a source term
are straight lines on a logarithmic scale, where the
spatial slope (decay as function of ρ) will become larger
with increasing frequency. This follows from (22).
Hence, at spatial locations where there is no deposition
and at sufficient distance to the boundary for which
(22) is a valid solution, which can be seen in Fig. 13
by the solid lines.

The second extreme case is if there is only heating
over the entire domain and no (diffusive) transport,
then the analytical solution in slab geometry is given
by

Θ (ω, ρ) =
Pech (ρ) Ũ (ω)

iω
, (24)

where Ũ (ω) = F
(
Ũ (t)

)
. Consequently, if Pech (ρ)

is constant the slope equals zero. If Pech (ρ) changes
with ρ, Θ (ρ, ω) changes exactly the same. If
one calculates the diffusion coefficient based on the
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Figure 13. (a) The spatial dependency of the amplitude of the temperature
∣∣∣T̃e∣∣∣ at different frequencies for a narrow deposition

profile σ = 0.05 (lines) and a wide profile σ = 0.55 (dashed-lines), which corresponds to Tr. (b) The spatial dependency of the
phase of the temperature ∠T̃e at different frequencies for a narrow deposition profile (lines) and wide deposition profile. If one wants
to find the profiles for a specific modulation wave form (symmetric block-wave) simply multiply all the components with the fast
Fourier transform of the modulation.

harmonic components of (24) using the assumption
that no deposition is present on the domain, i.e.,
using (23), then with increasing frequency the diffusion
coefficient becomes larger. This is because with
increasing frequency the slope should become larger
in the pure diffusive case, but because there is no
change in slope, the diffusion coefficient will need to
compensate for this effect.

In reality, the resulting amplitude and phase
profiles, and consequently the estimated diffusion
coefficients, are the intermediate solution between
these extreme cases. This has been simulated using
P̂ (ρ) = Pdep (ρ, 1, 0.55) (5) and a slab geometry
instead of cylindrical geometry is used. This avoids
an extra ρ dependency. However, the same behavior
can be shown for cylindrical geometry. The resulting
amplitude and phase profiles are presented in Fig. 13.

The solid lines show the resulting profiles of
amplitude and phase for the localized heating. Indeed
one can see that they are relatively straight except
for the regions close to the boundaries and at the
deposition location. However, if the slopes are
compared to the profiles belonging to the redistributed
or wide profile (dashed lines) one sees directly that
they are no longer straight and are lifted up for
the amplitude and increase much slower for the
phase. Exactly this effect has been observed in several
machines [17, 43, 44], where the latter two references
also suggest it could be due to hysteresis. This confirms
that this effect is not limited to stellarators. In [17], it
is also stated that it is probably caused by turbulence.
Moreover, the phase behavior becomes also rather

difficult to interpret as has been explained in Sec. 5.1.
It is also possible to express the error directly in

the diffusion coefficient. Therefore, the relationships
in (23) are used, which can be accurately applied as
there is no measurement noise and the discretization
is very dense. The estimated profiles of χe in
terms of χA and χφ are shown in Fig. 14. One
can now see that the estimated diffusion coefficient
will increase with frequency for the wide heating
profile, which has also been vaguely noted in [24,
Fig. 16]. Moreover, as the semi-infinite domain
model has different boundary conditions than used in
the simulation, at the boundaries the χe estimates
are subject to large errors. However, for the narrow
deposition profile the diffusion coefficient can be
correctly calculated in the central domain. One can
also see that the effect on the phase is larger compared
to that of the amplitude profiles.

Conclusion Not taking a wide effective deposition
profile into account introduces a significant bias
(error) on the estimated transport coefficients

In summary, these simulations show similar behavior
to those measured, but how the actual profiles will
look in measurements depends on the exact form of
Peff . In the case of high frequency modulation Peff

must become visible as diffusion is suppressed. This
is also what is observed in the literature, where a
broadening of the deposition profile with a factor larger
than two is observed compared to the deposition profile
according to ray-tracing calculations [18, 19]. In [19]
this is studied to find an explanation for the broadening
through transport. However, one has to be careful
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Figure 14. (a) The spatial dependency of the diffusion coefficient based on the temperature perturbations amplitude at different
frequencies for a narrow deposition profile (lines) and wide redistributed profile (dashed-lines), which has been calculated using
(23). (b) The spatial dependency of the diffusion coefficient based on the phase of temperature at different frequencies for a narrow
deposition profile (lines) and wide redistributed profile (dashed-lines), which has been calculated using (23).

when analyzing high frequency modulation because
when the frequency is increased the pulse becomes
smaller and as (1) is an energy storage system also the
size of the perturbation will become smaller, i.e., the
amplitude of the perturbation decreases with frequency
[45]. This has significant impact on the signal to noise
ratio and in the case there is only a weak dependence
on P it is questionable if this will still be visible.
Moreover, as the mechanism for the redistribution
is unknown, there is always the possibility that it
has some frequency dependency. However, at the
moment we do not have any evidence for the latter.
Finally, we want to mention that in the linear context
increasing amplitude does not change the physical
transport coefficients and that linearity also implies
that frequency components are independent.

6. Transport model and physical mechanisms

The previous sections show that based on experimental
observations and empirical non-local models, transport
can be split in a fast and slow time-scale. Moreover,
it shows that for the fast time-scale either an error in
the absorbed deposition occurs with respect to what
is estimated or a fast transport mechanism is needed
that spreads heat over a large radii. Combining these
contributions in a linearized transport model results
in a model presented in Fig. 15. It combines the
different components affecting transport analyzed here.
If the observed Lissajous curves are valid for all radii,
then (2) gives an exact model for such measurements.
The reason is that for all ∆q̃e/ne in Fig. 2 one can
always find a Peff (ρ). Therefore, the next step is to

fit experimental data onto this model and analyze how
Peff (ρ) and χ (ρ) changes as function of various plasma
parameters, which, we expect will give insight into the
mechanisms explaining the measurements.

6.1. Discerning different transport components

The analysis in this paper shows that the slow and
fast time-scale can be separated, which is summarized
in Fig. 15. This is our first key step to understand
this 30 year old problem. In case we use a symmetric
block-wave (the standard) modulation: 1) The slopes
can be used to estimate the diffusion coefficients; 2)
The analysis in Sec. 3.2 shows that the height of
the Lissajous curve ∆q̃e/ne can be used to estimate
Peff , which can be compared. In case we do not
use a block-wave modulation or we have other slow
transport components such as a convective velocity,
more advanced methodologies are necessary. An
example is the algorithm presented in [53], as the
analysis in our paper shows if such methods are not
applied the transport coefficients will be erroneous. In
case of pure diffusive slow transport in Fig. 16 it is
shown how to identify it from real experiments. Note
that in high frequency modulation experiments the
assumption that the slow time-scale of transport has
little effect on the measurements still holds. As such
one can use FFT to estimate the (effective) deposition
profile or the break-in-slope method [54], which is
shown in [54] to give similar results with respect to
each other. However, as Fig. 13 (high frequency 500
Hz narrow vs. broad profile) and [21] shows in that
case still Peff is found and not necessarily the actual
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Slow (dynamic)

Peff (ρ) Ũ (t)P̂ (ρ) Ũ (t) ’Error’

E
Fast (static)

Figure 15. Transport model structure including the fast components and slow components including convective velocity Ve. This
model should be able quantitatively reproduce experimental observations of Lissajous curves.

Table 1. Mechanisms which could be responsible for an apparent broadening of the deposition profile Peff

E (heat deposition) T (fast transport)
Deviation from Gaussian bundle (side-lobes)[46] Turbulence broadening [47]

Multi-pass absorption [48] Isotope effect [49]
Broadening due to edge turbulence [50] MHD mode coupling [51, 6]

Thermal electrons [52]

qT (ρ)

q̃e
ne

−∇ρT̃e

qE (ρ)

q̃e
ne

−∇ρT̃e

Estimate step: fast transport (static)

χe

χe

q̃e
ne

−∇ρT̃e

χe

q̃e
ne

−∇ρT̃e

Estimate slope: diffusion (dynamic)

Observed

Figure 16. Overview of how to discern slow from fast transport,
i.e., the combination from E and T in terms of their heat flux
contributions qE and qT and the diffusive component χe. The
combination of qE and qT can be re-expressed in terms of Peff .

deposition profile.
Second key observation is that when the non-linear

regime is entered then there is a relationship, see (19),
between the slow time-scale and the fast time-scale
according to local non-linear models χ (P ). This means
that at least it is theoretically possible to reconstruct
part of T . However, as Peff has a significant impact on
∇ρTe and Te a change in Pech can also affect the slow
time-scale (critical gradients), which needs to be taken
into account in the analysis.

Third important point is that Peff (ρ) should
be independent of dependencies of the transport
coefficients ∇ρTe and Te as they will only affect the
slow time-scale. Hence, by identifying Peff (ρ), we can
describe and predict how fast transport phenomena
affect overall transport in fusion devices. The key will
be to identify the structure of the combination of E and
T , which can range from a simple factor in case of non-

absorbed heat, to complicated multi-dimensional non-
linear kernel functions, if not more complicated. A key
point of such experiments will be direct control over the
total power without influencing the deposition profile,
which is generally not the case when using multiple
modulated ECRH-sources. This is difficult using old
ECRH-systems. However, modern ECRH-systems, as
available at W7-X [55], can do power modulation with
various total power levels using a single source.

6.2. Physical mechanisms

Already for 30 years there is a debate on what causes
the fast component on transport. A number of
experiments have been performed to exclude certain
physical mechanisms and discern the slow and fast
time-scale. Especially, at W7-AS a lot of time was
invested using various experiments to analyze the fast
transport component. This includes high frequency
modulation to remove the slow-scale transport from
the ECE-measurements [4]. Also the effect of trapped
electrons was investigated using a special magnetic hill
configuration, which led to the conclusion that trapped
electrons are not the cause of this observation [21].
These all show consistently that the power deposition
profile from temperature measurements does not match
the calculated deposition profiles using ray-tracing
[3, 18], which are significantly narrower compared tot
the profile from temperature measurements.

At LHD they did not perform such an analysis,
but simply assumed that no error has been made in
the calculation of the deposition profile [9, p. 4].
Moreover, the arguments are brought forward that
as the spatial decay is non-monotonic (which can be
reproduced using Peff ) and as a similar Lissajous curve
is observed in the microscopic density fluctuations
(turbulence level), it simply cannot be a deposition
error [9]. In this paper it is shown that there must be
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a redistribution of power Peff , which is not localized
around the deposition profile, but has a contribution
over the entire plasma, based on phase delay between
spatial locations, and the fact that the Lissajous curves
show even for very large radii this behavior. In this
paper, we do not analyze the mechanisms, but a non-
exhaustive list of possible mechanisms which can cause
a broadening of the deposition profile (E) and transport
mechanisms which can transport energy over distance
on a fast time-scale (T ) is given in Table 1.

As we have not investigated which mechanism
is responsible for the broadening, we can only
speculate which mechanism is most likely to cause
the broadening. In case of ECRH only the multi-
pass absorption and especially broadening due to edge
turbulence seem to be viable candidates as the other
heating (loss) mechanisms are not expected to have a
significant impact. For fast transport it is more difficult
to attribute it to a specific mechanism.

7. Conclusion & Discussion

Based on the observations of linearity and observa-
tional studies of the direct dependence of transport
on power in stellarators and tokamaks, we have shown
that a linear model suffices to reproduce the Lissajous
curves as presented in the literature. However, it is
necessary to have an extra contribution to the heat
flux which acts on a fast time-scale similar to that of
the power modulation. We have shown that by analyz-
ing the delay either a deposition profile that is much
broader than predicted by ray-tracing codes or/and a
fast (non-local) transport mechanism is necessary to
explain the experimental observations. This showed
that the absence of delay in experiments can only be
explained if there is an effective heating term on all
radii. Moreover, introducing such a term in the trans-
port model allows a qualitative and in the future we
will show a quantitative reproduction of the temper-
ature profiles experimentally observed in stellarators.
This additional term also fits exactly to the observa-
tions in various fusion machines with respect to the
spatial amplitude and phase decay of the different har-
monic components including tokamaks.

As the diffusive time-scale is much slower than
that of the fast time-scale, it is possible to analyze these
transport contributions separately. A fast time-scale
related to heating and non-local contributions and a
slow dynamic time-scale related to local parameters
such as the diffusion and convective velocity.

In the future, five key issues need to be addressed:

(i) The observations on which this analysis is based
are made in low-density plasmas in stellarators.
Hence, a much larger class of discharges and
machines need to be analyzed to see if this fast

transport mechanism is also observed and what
additional physics needs to be taken into account.

(ii) The estimation of the effective heating profile Peff

needs to be improved by using a direct estimation
from temperature perturbations.

(iii) The standard estimation methods used in fusion
to determine the diffusion coefficient fail under
the influence of the additional fast transport
component in the heat flux. Hence, the
literature should carefully be reconsidered taking
the possibility of such an estimation error in χe
into account.

(iv) Statistical model validation techniques are neces-
sary to verify if the heat flux model on which the
estimate of χe is based is correct.

(v) Although perturbative experiments are largely
linear in fusion devices, some non-linearities can
be detected, which should be used to further
investigate the non-linear component of the fast
transport (mechanisms).

(vi) Finally, the correct mechanism or set of mecha-
nisms need to be identified.

As has been discussed in Sec. 6, it is impossible to
distinguish non-local transport and broadening of the
deposition profile based on temperature measurements
which are perturbed by small perturbations (linear)
only. On the other hand, the non-local transport
models show that over operating points there is a
relationship between the slow and fast time-scale which
only relates back to the non-local transport. For
instance, the change in diffusion coefficient as function
of power gives a contribution to both the slow and
to the fast time-scale. The existence and specifically
the quantification of this relationship using Peff over
different operating points should give independent non-
linear models for non-local transport and deposition
profile, e.g., changing the diffusion coefficient without
changing the shape of the deposition profile. These
measurement based models can be linearized again
resulting in a deposition profile and a non-local
transport contribution. Alternatively, Peff can be
studied varying deposition profiles and studying its
correlation to ray-tracing, however, this is a more
complicated approach. Both approaches are work in
progress and if successful we will report on this in a
new publication.
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Appendix A. Linearization

Assume a perturbation around an equilibrium

P (ρ, t) ≈ P0 (ρ) + P̃ (ρ, t) , (A.1)

which perturbs the temperature

Te (ρ, t) ≈ T0 (ρ) + T̃e (ρ, t) (A.2)

and the heat flux

qe (ρ, t) ≈ q0 (ρ) + q̃e (ρ, t) . (A.3)

The heat equation in (1) is already linear, it can be
restated in terms of perturbed quantities. The heat
flux contributions of (12) need to be approximated by
a Taylor expansion as follows

qP (ρ, P (ρ, t)) ≈ qP (ρ, P0 (ρ))

+

((
∂qP
∂P

(·, P0)

)(
P̃
))

(ρ, t) + h.o.t. (A.4)

and

χe (ρ, P (ρ, t)) ≈ χe (ρ, P0 (ρ))

+

((
∂χe
∂P

(·, P0)

)(
P̃
))

(ρ, t) + h.o.t. (A.5)

The notation ( ) (ρ, t) is used to express that first the
FrÃ©chet derivative needs to be taken and only then
the equilibrium profiles should be substituted. The
FrÃ©chet derivative is necessary as we do not know
the dependence of qP on P . To further clarify this,
consider for example

qP (ρ, P (·, t)) =

∫ 1

0

h(ρ, ξ)P (ξ, t)2dξ, (A.6)

where h (ρ, ξ) is some unknown kernel function. Then,
the FrÃ©chet derivative can be analytically calculated
as follows((

∂qP
∂P

(·, P0)

)(
P̃
))

(ρ, t) =

2

∫ 1

0

h(ρ, ξ)P0(ξ, t)P̃ (ξ, t)dξ. (A.7)

This dependency of qP on ρ is still present at all radii.
Let us continue with the linearization by substituting

(A.4) and (A.5) in (12), i.e.,

qe (ρ, t) ≈
qP (ρ, P0 (ρ))− χe (ρ, P0 (ρ))ne∇ρT0 (ρ)︸ ︷︷ ︸

static q0(qoffset)

−
(
∂χe
∂P

(·, P0)

)(
P̃
)

(ρ, t)ne∇ρT̃e (ρ, t)︸ ︷︷ ︸
product of perturbations, i.e., negligible

+

((
∂qP
∂P

(·, P0)

)(
P̃
))

(ρ, t)

−
(
∂χe
∂P

(·, P0)

)(
P̃
)

(ρ, t)ne∇ρT0 (ρ)

− χe (ρ, P0 (ρ))ne∇ρT̃e (ρ, t) , (A.8)

such that only the last three terms need to be
considered in q̃e. This results for q̃e (ρ, t) in (14).

Appendix B. Calculation of the time delay of
∇ρTe in a source-less slab-geometry
semi-infinite half-space

The partial differential equation in (4) can be simplified
by assuming pure diffusion with constant density on
a slab domain (approximation of cylindrical domain
at large radii) without heating. This results in the
simplification

∂T̃e (ρ, t)

∂t
=

∂

∂ρ

(
χe
∂T̃e (ρ, t)

∂ρ

)
. (B.1)

Transforming this into the frequency domain results in

iωΘ (ρ, ω) =
∂

∂ρ

(
χe
∂Θ (ρ, ω)

∂ρ

)
,

where Θ (ω, ρ) is the Fourier transform of the
temperature, i.e., Θ (ρ, ω) = F

(
T̃e (ρ, t)

)
. The

solution for a semi-infinite domain, i.e., for ρ →
∞,Θ (ρ, ω) = 0, and boundary condition Θ (ρ1, ω) =
Θ (ρ1, ω) results in following solution

Θ (ω, ρ) = exp

(
−
√
iω

χe
(ρ− ρ1)

)
Θ (ρ1, ω) , (B.2)

which is also given in [40, 41]. The ratio (transfer
function) between the temperature at location ρ1,
Θ (ρ1, ω), and at an arbitrary location ρ, Θ (ω, ρ),
is generally used to determine the temperature
perturbation. Its spatial derivative is given by

∂Θ (ρ, ω)

∂ρ
= −

√
iω

χe
exp

(
−
√
iω

χe
(ρ− ρ1)

)
Θ (ρ1, ω) .

(B.3)
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Rewriting (B.3) in terms of A exp (iφ) yields

∂Θ (ρ, ω)

∂ρ
= −

√
ω

χe
exp

(
−
√

ω

2χe
(ρ− ρ1)

)
exp

((
−
√

ω

2χe
(ρ− ρ1) +

π

4

)
i

)
Θ (ρ1, ω) , (B.4)

such that the relative delay ∆τ [s] of ∇ρTe is given by

∆τ = − 1

ω

(√
ω

2χe
(ρ− ρ1)− π

4

)
, (B.5)

when χe is dimensionless. In case χe has dimension
[m2/s], ρ − ρ1 should be multiplied with a. This
equation can be used to calculate the delay for
a specific frequency from one location to another
assuming no heating on the domain [ρ1, ρ]. As here
the delay is described in terms of a phase delay, the
minus sign can also be omitted.

Now, consider ρ1 to be the deposition location ρdep
and assuming no heating on the slab geometry semi-
infinite domain except at the deposition location itself
ρdep. Then ∆τ depends on three factors: the frequency,
the transport coefficients, here diffusion only, and the
distance to the center of deposition. Note that this
delay should not be interpreted as dead-time, but as
the phase difference in terms of seconds. The reason is
that mathematically the response to a perturbation in
(1) is always instant, but effectively it takes some time
to see the actual response.

The frequency used in the experiment was 25 Hz.
Hence, the delay as function of ∆ρ = ρ−ρdep becomes

∆τ = 20 ·∆ρ · a− 5 [ms]

and consequently a delay of ∆τ = 17 [ms] will occur
for a distance of ∆ρ = 0.5 in slab geometry.
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