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ABSTRACT

Fiber reinforced composites have been used in various engineering structures and 

applications especially in naval, automotive, aeronautical and sports industries. These 

composite materials generally exhibit brittle damage behavior. The anisotropy in the 

material and different kinds of failure mechanisms make it difficult to accurately 

characterize the behavior of composite materials. The present work aims to verify and 

apply the Puck Failure Criteria using the commercially available finite element package 

ABAQUS by writing a user-material subroutine in FORTRAN. The model is implemented 

with different post failure degradation schemes. 

In the present work, the progressive failure on composite materials in analyzed 

using the Puck failure criteria to detect damage initiation. The ABAQUS user defined 

material subroutine UMAT was developed to apply the failure criteria and degradation 

models. The progressive failure analysis of a single lamina of a composite material is 

carried out on an open hole specimen under uniaxial tension. A partial discount method 

and a gradual stiffness degradation method is implemented and the results using these 

degradation models are compared. The damage initiation and progression obtained from 

the proposed model is compared with the observed experimental results and the digital 

image correlation data. This model was then used for the progressive failure analysis of a 

composite laminate with a central hole loaded in inplane tension with different stacking 

sequences and compared with the results obtained from literature.  
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From the results, it can be seen that the Puck failure hypothesis is a robust and 

versatile criteria which can be used for the progressive failure analysis of continuous fiber 

unidirectional composite laminates. 
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CHAPTER 1 

INTRODUCTION

1.1 BACKGROUND 

 Composite materials are materials made from two or more constituent 

materials with significantly different material properties combined to make a superior 

material with unique properties. Composites occur naturally, for example wood found in 

nature and even the bones in every skeletal system are composite materials. Composites 

have been used as building materials for thousands of years. Mud bricks have been 

reinforced with straw materials which provide more tensile strength than conventional mud 

bricks. Concrete is also a composite material, it is a mixture of aggregate, cement and sand. 

Most modern composites are made of two materials – fibers which provide strength and 

carry a bulk of the tensile load and a matrix or binder material to reinforce the fibers.  

Recently fiber reinforced composites have been used in various engineering 

structures and applications especially in naval, automotive, aeronautical and sports 

industries. The Boeing 787 Dreamliner and the Airbus A380 are large capacity passenger 

airplanes and make use of composite materials owing to the high stiffness to low weight, 

high tensile strength, non-corrosive properties and the fact that composite materials have 

different properties in different directions, makes it possible for the materials to be 

tailormade specifically for the product requirement. Carbon fiber reinforced composite 

materials can have up to five times the strength of 1020 grade steel while having one-fifth 

of the weight [2].  
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These composite materials generally exhibit brittle damage behavior.  There is little 

plastic deformation and failure occurs suddenly. The anisotropy in the material and 

different kinds of failure mechanisms make it difficult to accurately characterize the 

behavior of composite materials. 

 A number of failure criteria were proposed to describe the damage in 

composite materials. Section 2 of this thesis deals with the literature review wherein a brief 

review of many of the progressive failure models are provided. In the early 90s, the World-

Wide Failure Exercise (WWFE) was initialized and to provide a comprehensive 

coordinated study of the predictive capabilities of prominent failure criteria currently in 

use to describe the behavior of fiber reinforced laminates. The authors of many of the 

failure criteria were invited to provide blind predictions for different cases and then these 

predictions were evaluated against other predictions and the experimental data. The first 

exercise, WWFE I dealt with 2D stress cases with 19 failure criteria being evaluated [1]. 

The second exercise, WWFE II dealt with 3D stress cases with 12 criterions being 

evaluated [2]. The third exercise WWFE III dealt with laminates with a stress concentration 

under inplane loading conditions [3]. From the results of the WWFE I and WWFE II, there 

was no clear consensus on the best performing failure criteria for all the different load cases 

however, it showed the strengths and the shortcomings of the criteria. The Puck Failure 

Criteria was found to perform well for most of the test cases. 

1.2 OBJECTIVE 

 Though the performance of composite materials is very good, it presents a 

challenge to develop composite structures for use in various industries. Numerical 

simulations can help to reduce cost and time for developing these structures. The present 
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work aims to apply the Puck Failure Criteria using the commercially available finite 

element package ABAQUS by writing a user-material subroutine in FORTRAN to 

simulate the progressive failure of continuous fiber unidirectional composite materials. The 

model is implemented with different post failure degradation schemes. The model is 

validated against an experiment conducted on a single layer lamina with a central hole 

loaded in inplane tension. The Digital Image Correlation (DIC) data and the experimental 

data were compared with the model prediction. Another validation test was conducted by 

comparing failure loads for a group of composite laminates with a central hole and different 

stacking sequences subjected to inplane tension. 
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CHAPTER 2 

LITERATURE REVIEW

This section provides a brief review of the various progressive failure models 

available in literature. 

W Van Paepegem and J Degrieck [1] have proposed a residual stiffness model 

which simulates the full cycle from initial decline to final failure. The modified Tsai-Wu 

criterion by Tsai-Liu was further modified to determine the calculated safety factor and 

then defined the fatigue failure index which can be accepted as a suitable stress measure. 

The model was developed as two functions - damage initiation and damage propagation 

and the final layout of the model was a superposition of the two functions.  The model 

developed is one-dimensional in nature, only longitudinal stiffness is considered and 

delamination’s have not been included in the model. 

C. Schuecker and H.E. Pettermann [2] proposed a continuum damage model based 

on brittle failure mechanisms. They hypothesized that any non-linear material behavior 

was the result of brittle cracks forming in the composites. Puck 2D criterion was employed 

to determine failure modes and damage growth. First, the current damage on the current 

load measure is computed and then, the effect of damage on the elasticity tensor is predicted 

by a fourth order tensor equation also taking into account the current stress state. The 

laminate response predicted by this model is too stiff under shear dominated loading 

conditions. 
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Mahmood M Shokrieh and Larry B Lessard [3] proposed a model capable of 

simulating the fatigue behavior of laminated composites under general loading conditions, 

with or without stress concentrations. This model can determine the residual strength, 

residual stiffness and fatigue life of composite laminates with arbitrary geometry and 

stacking sequence under complicated fatigue loading conditions. Failure modes were 

determined by Hashin’s criteria. 

S C Tan and R J Nuismer [4] proposed a progressive matrix cracking model in 

which the laminate is assumed to contain periodic cracks with even spacing. A plane stress 

assumption and a generalized plane stress assumption were employed. The salient feature 

about this model is that it requires basic material properties such as moduli, Poisson ratio, 

thermal expansion coefficients and the specific fracture energy. This model is only 

applicable under the given assumptions. 

Fu-Kuo Chang  and Kuo-Yen Chang [5] proposed a damage model for notched 

laminates subjected to tensile loads with any arbitrary ply orientations. The 2D plane stress 

assumption was used and loads were assumed to increase incrementally in small steps such 

that the stress-strain relations were assumed to be linear. A finite element method combined 

with a Newton-Raphson scheme was developed to solve the model.  

F Cesari, V Dal Re, G Minak and A Zucchelli [6] have proposed a damage model 

for carbon-fiber reinforced epoxy-resin laminates loaded at the center to simulate low 

velocity impacts. The 3D Hashin criteria were used to determine the individual damage 

modes. A numerical model to predict the first ply failure and the ultimate ply failure of the 

laminate was developed using ANSYS. 
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Dahlen C and Springer G S [7] proposed a semi-empirical model to determine the 

growth of delamination in laminates under cyclic loading and mode I, mode II and mixed 

mode conditions. Mode III was assumed to not contribute significantly to delaminations. 

A growth law similar to Paris growth law was employed. 

Xiao J and Bathias C [8] studied notched and un-notched woven composites with 

mechanical properties the warp direction being much higher than those in the weft. They 

showed that the ratios between fatigue strength and ultimate tensile strength for both 

notched and un-notched cases are equal to their respective static strength ratios. 

H A Whitworth [9] proposed a model to predict the stiffness degradation in 

composite laminates based on an assumed relation between the failure stiffness and the 

applied stress. The statistical distribution of the residual stiffness is obtained from a 2-

parameter Weibull distribution. The theoretical distribution over-predicts in some cases, 

the accuracy improves with increasing cycle number. The present model is only limited to 

specimens subjected to constant amplitude fatigue loading and assumes that the residual 

stiffness is a monotonically decreasing function of the fatigue cycles. 

Alexandros E Antoniou, Christoph Kensche and Theodore P Philippidis [10] 

proposed 3 different models, one implements the Puck’s failure criteria and associated 

progressive stiffness degradation rule, the second one is based on Lessard and Shokrieh 

limit theory while the third is similar to the first, implements Puck’s IFF criteria and 

associated gradual stiffness degradation rules however having different conditions for fiber 

breakage. Failure modes were restricted to 2D in plane patterns. Elastic modulus in the 

fiber direction and the major Poisson ratio were considered constant.  
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P C Wang, S M Jeng and J M Yang [11] studied the stiffness reduction and 

evolution of microstructural damage of a unidirectional composite under tension-tension 

fatigue. A partial crack shear-lag model developed by Kuo and Chou for ceramics was 

adopted and modified for application in metal composites to predict residual stiffness as a 

function of fatigue damage evolution. The fiber matrix interfacial bonding was assumed to 

be perfect. The results suggest that the matrix crack density controls the stiffness 

degradation profile. The residual stiffness is independent of the applied stress levels 

however the accumulation of microstructural damage varies with the applied stress. 

J N Yang, D L Jones, S H Yang and A Meskini [12] proposed a stiffness 

degradation model to predict the statistical distribution of the residual stiffness of 

composites subjected to fatigue loading. Two analytical methods were presented, one based 

on linear regression analysis and the other on the Bayesian approach. The results are only 

accurate if fatigue life data already exists up to 50% of the fatigue life. 

K I Tserpes, P Papanikos and Th Kermanidis [13] proposed a 3-D progressive 

damage model to simulate the damage accumulation and predict the residual strength and 

final failure mode of bolted composite joints under in-plane tensile loading. The 3D Hashin 

failure criteria as reported by Shokrieh and Lessard was used to predict failure. Material 

property degradation rules as proposed by S C Tan were used.  

T Kevin O’Brien and Kenneth L Reifsnider [14] proposed a secant modulus 

criterion that would predict fatigue failure of the laminate while tests were being carried 

out. When the static stiffness measured during fatigue, Ef degrades from its initial tangent 

modulus, Ei, to the secant modulus measured in a static ultimate strength test, Es regardless 

of load history, fatigue failure occurs. The secant modulus criterion however was not a 
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valid failure criterion for general application but can be applied to only specific laminate 

orientations. 

C D M Liljedahl, A D Crocombe, M A Wahab and I A Ashcroft [15] proposed a 

numerical modelling techniques for predicting the environmental degradation of 

adhesively-bonded joints. A CZM was implemented in the FEA by use of a user-defined 

element (UEL). The CZM parameters were determined by correlating experimental data 

and numerical predictions for initial failure loads. 

W Hwang and K S Han [16] proposed a new concept called "fatigue modulus," 

which is defined as a slope of applied stress and resultant strain at a specific cycle. They 

assumed that the fatigue modulus degradation follows a power function of the fatigue 

cycles. The fatigue life was determined from the fatigue modulus and was found to have a 

better agreement with experimental data than the S-N curves and Basquin’s relation. 

Stephen R Hallet and Michael R Wisnom [17] proposed a new approach to 

modelling of notched composite materials using interface elements to model the inter and 

intra ply damage. This method was developed to model delamination in composites. It can 

be used to predict the initiation and propagation of the delamination, however it requires a 

prior knowledge of the potential failure sites. 

Timothy W Coats and Charles E Harris [18] experimentally verified a continuum 

damage model which was used to predict the development of progressive damage in a 

toughened material system. The Allen and Harris model was employed to model the 

behavior of micro-crack damage by predicting stiffness loss and damage in a laminate. . 

The model neglects edge effects, uses internal state variables to represent the local 

deformation effects. 
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A S Koumpias , K I Tserpes and S Pantelakis [19] developed a progressive damage 

model to simulate the mechanical response, predict the quasi static strength of a fully 

interlaced 3D woven composite and predict the damage initiation and progression as a 

function of the applied load as well as the stiffness and strength of the composite. The 

Hashin type failure criteria were used to predict the failure modes. To model the 

mechanical response of the matrix, the multi-linear isotropic hardening material model 

developed by Rolfes et al was used in the progressive damage model. The predicted failure 

pattern for longitudinal tension is in complete agreement with the tests from that of Stig 

and Hallstrom 

Yuang Liang, Hai Wang, Costas Soutis, Tristan Lowe and Robert Cernik [20] 

conducted quasi-static punch shear tests on satin weave carbon/epoxy laminates in an effort 

to determine the damage that could develop during a penetrating impact event. The Hashin 

criteria was employed as the failure criteria. Once damage occurs in an element based on 

the Hashin criteria, a ply-discount degradation of material property was applied as the 

damage progression strategy. A constant parameter, βk was used as the damage variable in 

the stiffness reduction method. Using a function instead of a constant as the damage 

variable would yield better results. 

M Ridha, C H Wang, B Y Chen and T E Tay [21] developed a progressive failure 

model for orthotropic composite laminates to predict the effect of specimen size and 

laminate orthotropy on the open-hole tension (OHT) strength. The max stress failure 

criterion is combined with the Tsai-Wu failure criterion to model fiber-dominated and 

matrix-dominated failure. The models are able to predict the correct trend of the effect of 

specimen size on OHT strength, however the model under predicts the OHT strength of a 
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specimen having four 0˚ plies because the stiffness and strength of laminates increases as 

the percentage of 0˚ plies increases. 

John Montesano, Marina Selezneva, Martin Levesque and Zouheir Fawaz [22] 

developed a fatigue prediction model to predict damage tolerance capability of polymer 

matrix composite structures. The model accounts for local multi-axial as well as variable 

amplitude cyclic loading. The continuum damage model (CDM) developed also 

incorporates a cumulative damage law that is a function of the number of loading cycles. 

The model assumes that during unloading, the material properties are same as the 

undamaged materials, suitable failure criteria’s are not defined. The model also assumes 

that compressive stresses do not cause any damage and thus do not affect material stiffness. 

Ciaran R Kennedy, Conchur M O Bradaigh and Sean B Leen [23] presented a 

model that combines the fatigue induced fiber strength and modulus degradation, 

irrecoverable cyclic strain effects and inter fiber fatigue. The predicted response captures 

the overall modulus degradation in the first cycle and the evolution of degradation in 

subsequent cycles until failure however, delamination was not considered as a failure 

mode. 

C T McCarthy , R M O’Higgins and R M Frizzell [24] developed a novel approach 

where a cubic spline interpolation method was used to capture the non-linear shear 

behavior. A ply discount method based of Hashin’s criteria was employed to determine the 

damage, also the spline approach along with the maximum strain failure criteria was 

employed to predict the shear response. This model accurately predicts tensile strength and 

modulus but under-predicts the ultimate transverse strain. But only when shear stresses 

dominate 
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Brett A Bednaryck, Bertram Stier, Jaan-W Simon and Evan J Pineda [25] presented 

a comparison between the meso scale and micro scale approaches to modelling progressive 

damage in plain weave reinforced polymer matrix composites. A continuum damage model 

was developed and implemented based on the 2-D approach given by Barbero and was 

extended for 3-D case. The damage model is based on the principle of energy equivalence 

with infinitesimal strains. The micromechanics model was based on the generalized 

method of cells (GMC) developed by Paley and Aboudi. It is an efficient semi-analytical 

method that provides homogenized, non-linear constitutive response of a composite 

material. Very similar results were obtained using the two approaches, however these 

models were not compared with any experimental results. 

Bartley-Cho J, Lim S G, Hahn h T and Shyprykevich P [26] studied the behavior 

of quasi-isotropic graphite epoxy laminates. The authors obtained a failure function which 

varies with number of cycles following an experimentally determined relationship to 

predict ply cracking. The crack density was calculated, and it was found that in absence of 

other competing damage modes, the crack density increased with applied load levels which 

is opposite to the belief that crack density is independent of load history. 

Talreja R [27] presented a continuum damage model where internal damage 

variable are characterized by tensorial quantities. Matrix cracking and delamination were 

the only damage modes considered, and it was assumed that these damage modes do not 

mutually interact but were accounted for separately one damage mode at a time and the 

effects were later superimposed. 

  



 

13 

2.1 LIST OF REFERENCES

[1]. W Van Paepegem and J Degrieck, ‘A new coupled approach of residual stiffness 

and strength for fatigue of fibre-reinforced composites’, International Journal of Fatigue 

(2002), 24:747–762. 

 

[2]. C. Schuecker and H.E. Pettermann, ‘Fiber Reinforced Laminates: Progressive 

Damage Modeling Based on Failure Mechanisms’, Arch Comput Methods Eng (2008), 

15: 163–184 

 

[3]. Mahmood M Shokrieh and Larry B Lessard, ‘Progressive Fatigue Damage 

Modeling of Composite Materials, Part I: Modeling’, Journal of Composite Materials 

(2000), 34:1056-1080 

 

[4]. S C Tan and R J Nuismer, ‘A Theory for Progressive Matrix Cracking in 

Composite Laminates’, Journal of Composite Materials (1989), 23:1029-1047 

 

[5]. Fu-Kuo Chang  and Kuo-Yen Chang, ‘A Progressive Damage Model for 

Laminated Composites Containing Stress Concentrations’, Journal of Composite 

Materials (1987), 21:834-855 

 

[6]. F Cesari, V Dal Re, G Minak and A Zucchelli, ‘Damage and residual strength of 

laminated carbon-epoxy composite circular plates loaded at the center’, Composites: Part 

A (2007), 38:1163–1173 

 

[7].  Dahlen C and Springer G S, ‘Delamination growth in composites under cyclic 

loading’, Journal of Composite Materials (1994), 28:732-781 

 

[8]. Xiao J and Bathias C, ‘Fatigue behavior of un-notched and notched woven 

glass/epoxy laminates’, Composites Science and Technology (1994), 50:141-148 

 

[9]. H A Whitworth, ‘A stiffness degradation model for composite laminates under 

fatigue loading’, Composite Structures (1998), 40.2:95-101 

 

[10]. Alexandros E Antoniou, Christoph Kensche and Theodore P Philippidis, 

‘Mechanical behavior of glass/epoxy tubes under combined static loading, validation of 

FEA progressive damage model’, Composites Science and Technology (2009), 69:2248–

2255 

 

[11]. P C Wang, S M Jeng and J M Yang, ‘Characterization and modeling of stiffness 

reduction in SCS-6-Ti composites under low cycle fatigue loading’, Materials Science 

and Engineering (1995), A200:173-180 

 

[12]. J N Yang, D L Jones, S H Yang and A Meskini, ‘A Stiffness Degradation Model 

for Graphite/Epoxy Laminates’, Journal of Composite Materials (1990), 24:753-769 



 

14 

[13]. K I Tserpes, P Papanikos and Th Kermanidis, ‘A three-dimensional progressive 

damage model for bolted joints in composite laminates subjected to tensile loading’, 

Fatigue and Fracture of Engineering Materials and Structures (2001), 24:663–675 

 

[14]. T Kevin O’Brien and Kenneth L Reifsnider, ‘Fatigue Damage Evaluation through 

Stiffness Measurements in Boron-Epoxy Laminates’, Journal of Composite Materials 

(1981), 15:55-70 

 

[15]. C D M Liljedahl, A D Crocombe, M A Wahab and I A Ashcroft, ‘The effect of 

residual strains on the progressive damage modelling of environmentally degraded 

adhesive joints’, Journal of Adhesion Science and Technology (2012), 7:525-547 

 

[16]. W Hwang and K S Han, ‘Fatigue of Composites - Fatigue Modulus Concept and 

Life Prediction’, Journal of Composite Materials (1986), 20:154-165 

 

[17]. Stephen R Hallet and Michael R Wisnom, ‘Numerical Investigation of 

Progressive Damage and the Effect of Layup in Notched Tensile Tests’, Journal of 

Composite Materials (2006), 40:1229-1245 

 

[18]. Timothy W Coats and Charles E Harris, ‘Experimental Verification of a 

Progressive Damage Model for IM7/5260 Laminates Subjected to Tension-Tension 

Fatigue’, Journal of Composite Materials (1995), 29:280-305 

 

[19]. A S Koumpias , K I Tserpes and S Pantelakis, ‘Progressive Damage Modeling of 

3D Fully Interlaced Woven Composite Materials’, Fatigue and Fracture of Engineering 

Materials and Structures (2014), 37:696-706 

 

[20]. Yuang Liang, Hai Wang, Costas Soutis, Tristan Lowe and Robert Cernik, 

‘Progressive Damage in Satin Weave Carbon/Epoxy Composites under Quasi-Static 

Punch Shear Loading’, Polymer Testing (2015), 41:82-91 

 

[21]. M Ridha, C H Wang, B Y Chen and T E Tay, Modeling Complex Progressive 

Failure in Notched Composites Laminates with Varying Sizes and Stacking Sequence’, 

Composites: Part A (2014), 58:16-23 

 

[22]. John Montesano, Marina Selezneva, Martin Levesque and Zouheir Fawaz, 

‘Modeling Fatigue Damage Evolution in Polymer Matrix Composite Structures and 

Validation Using in-situ Digital Image Correlation’, Composite Structures (2015), 

125:354-361 

 

[23]. Ciaran R Kennedy, Conchur M O Bradaigh and Sean B Leen, ‘A Multi-axial 

Fatigue Damage Model for Fiber Reinforced Polymer Composites’, Composite Structures 

(2013), 106:201-210 

 



 

15 

[24]. C T McCarthy , R M O’Higgins and R M Frizzell, ‘A Cubic Spline 

Implementation of Non-Linear Shear Behavior in Three-Dimensional Progressive 

Damage Model for Composite Laminates’, Composite Structures (2010), 92:173-181 

 

[25]. Brett A Bednaryck, Bertram Stier, Jaan-W Simon and Evan J Pineda, ‘Meso- and 

Micro-Scale Modeling of Damage in Plain Weave Composites’, Composite Structures 

(2015), 121:258-270 

 

[26]. Bartley-Cho J, Lim S G, Hahn h T and Shyprykevich P, ‘Damage accumulation in 

quasi-isotropic graphite/epoxy laminates under constant amplitude fatigue and block 

loading’, Composites Science and Technology (1998), 58:1535-1547 

 

[27]. Talrja R, ‘Stiffness properties of composite laminates with matrix cracking and 

interior delamination’, Engineering Fracture Mecanics (1986), 25:751-762 

 



 

16 

CHAPTER 3 

THEORY

3.1 SCALE OF THE ANALYSIS 

 The analysis of the composite materials can be conducted at four different scale – 

micro-mechanical, lamina level, laminate level and structural level [1]. The 

micromechanical level considers the fibers and matrix separately, each having different 

properties and different behavior. The interaction between the fibers and matrix is 

considered. In the lamina level, the fibers and matrix are treated as homogeneous 

anisotropic materials. Orthotropic material models are generally used at this scale. Most of 

the failure criteria are developed at this level and are considered in a layer-wise manner for 

intralaminar failure [2]. On the laminate level, the material is observed as a stack of several 

laminas, including interfaces. At this level, inter-laminar and intra laminar stresses are 

obtained for each layer and also for the interfaces. Intra laminar failure analysis and 

delamination is conducted at this level. On the structural level, whole components of the 

structure are considered. These may involve complex local stacking sequences and 

geometries of the component. In the current work, the Puck failure criteria is utilized at the 

lamina scale and delamination failure has not been considered. 

The constitutive models relate the state of strain to the state of stress. The model 

used in a three-dimensional material model for a linear elastic and orthotropic material. 

The normal components are coupled while the shear components are completely 

uncoupled.  
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    Figure 3.1 Different Scales of Analysis 

3.2 PUCK FAILURE CRITERIA 

Fiber reinforced composites usually display brittle fracture mechanics wherein the 

fracture occurs suddenly without major plastic deformation. The macroscopic failure of a 

composite can be seen at the lamina scale. This appears as fiber fracture (FF) or inter fiber 

fracture (IFF). The Puck theory presents separate equations for the FF and IFF. 

3.2.1 FIBER FAILURE 

 The fiber failure generally is regarded as the final failure of the lamina. Fiber failure 

is defined as the simultaneous breakage of a large number of elementary fibers [3]. The 

fibers have a much higher stiffness than the matrix and carries much higher loads in the 

fiber direction. However, transverse to the fiber direction, nearly the same amount of stress 

acts on both the fiber and the matrix. The fiber failure is considered as a statistical process. 

Individual fibers may start to fail at 60% of the fiber fracture limit for static load cases [4].  
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Figure 3.2 Different forms of Fiber Fracture (FF) 

 Figure 3.2 illustrates the different fiber fracture modes. Under a tensile load, the 

fibers rupture perpendicular to the fiber direction. Under a compressive load, three failure 

modes are possible. Buckling is the prominent damage mode wherein the fibers in a large 

region bend in a common direction, with fiber kinking being the buckling on a more 

macroscopic level. Fiber fracture due to shear rarely occurs. It requires a perfect alignment 

of the fibers and bonding of the fiber-matrix in which case shear stresses acting on the 

fibers causes the fracture at an inclined fracture plane. The fiber failure impedes the ability 

of the lamina to carry load and causes delamination’s and stress concentrations in nearby 

laminas which may lead to subsequent failures [5]. 

 The fiber failure is generally caused by σ|| stresses. In the earlier versions of the 

Puck failure criteria [6], a maximum stress criterion was used to describe the fiber failure 

as shown in the equations below. 

 

 𝑓𝐸,𝐹𝐹 =
𝜎1

±𝑅∥
𝑡,𝑐 

 (3.1) 
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 Where σ1 is the tensile stress along the fiber direction and 𝑅∥
𝑡,𝑐

 are the tensile and 

compressive strengths of the material. 𝑅∥
𝑡 is used for positive σ1 and −𝑅∥

𝑐 is used for 

negative σ1.  

However, for a more accurate analysis the effects of σ2 and σ3 have to be considered. 

Due to different Youngs moduli for the fiber and matrix, though the stress is similar the 

micro-mechanical strain is different. A stress magnification factor, mσf for the transverse 

stresses takes this into account. Puck proposed a value of 1.3 for GFRP and 1.1 for CFRP. 

This discrepancy is due to the fact that glass fibers have a higher Youngs modulus than 

carbon fibers [7]. 

According to Puck, the fiber failure occurs when the stress in the fibers σ1f reaches 

the strength of the fibers [8]. Thus, the Puck criteria uses the stresses and strengths of the 

fibers instead of the material. This is similar to the maximum stress criteria but is extended 

to the fibers. The equation for the fiber failure is derived as follows: 

 ε1f =
σ1f
E∥f

−
ν∥⊥f
E⊥f

mσf(σ2 + σ3) (3.2) 

Using 
ν∥⊥f

𝐸⊥𝑓
=

ν∥f

𝐸∥𝑓
, 𝑎𝑛𝑑 𝜀1𝑓 = 𝜀1, 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑 𝑓𝑜𝑟 𝜎1𝑓 

 𝜎1𝑓 = 𝐸∥𝑓𝜀1 + ν∥f𝑚𝜎𝑓(𝜎2 + 𝜎3) (3.3) 

 

Also,ε1 =
σ1

E∥
−

ν∥⊥

E∥
(σ2 + σ3)  and   σ1fat fracture

= ±R∥f
t,c = 

E∥f

E∥
±R∥

t,c
 

 fE,FF =
1

±R∥
t,c [σ11 − (v⊥∥ − v⊥∥f. mσf

E∥

E∥f
) (σ22 + σ33)] (3.4) 

𝑤𝑖𝑡ℎ {
+𝑅∥

𝑡 𝑓𝑜𝑟 [… ] ≥ 0

−𝑅∥
𝑐 𝑓𝑜𝑟 [… ] ≤ 0
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Where f𝐸,𝐹𝐹 is the fiber failure stress exposure of the lamina, ±𝑅∥𝑓
𝑡,𝑐

are the effective 

tensile and compressive strengths of the fiber parallel to fiber direction, ±𝑅∥
𝑡,𝑐

 is the tensile 

and compressive strengths of the material, σ11, σ22 and σ33 are the normal stresses acting in the 

lamina, v⊥∥ and v⊥∥f are the major Poisson’s ratio of the lamina and of the fibers 

respectively, 𝐸∥ and 𝐸∥𝑓 are the longitudinal modulus of the lamina and the fibers respectively 

and mσf is the stress magnification factor for transverse stresses in the fibers. 

 For purely tensile loading, this criterion performs similar to the maximum stress 

criteria but under higher transverse stresses, the effect is more pronounced. Fiber failure 

based on the Puck theory is the last ply failure of the laminate. 

3.2.2 INTER FIBER FRACTURE 

 Inter fiber failure or matrix failure can be defined as a macroscopic crack formation 

through the matrix material. It includes the cohesive matrix fracture and the adhesive 

fracture of the fiber-matrix-interphase. An IFF crack is generated instantly and propagates 

till the fiber boundaries. The IFF can occur in different forms as seen in Figure 3.3 based 

on the kind of loading. Under transverse tension or longitudinal shear, a straight crack 

oriented perpendicular to the stress is observed while under transverse compression and 

transverse shear, an inclined crack is observed. The presence of IFF leads to a redistribution 

of stresses in the laminate but the lamina is still able to carry some load. The presence of 

IFF leads to successive damage due to a concentration of the stresses and to delamination, 

especially near the crack tip. 
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Figure 3.3 Different forms of Inter Fiber Fracture (IFF) 

An IFF can have a varying impact on the capacity of a laminate depending on the 

angle of the fracture plane. The straight cracks formed under transverse tension or 

longitudinal shear can generally be tolerated. The major risk with this type of damage is 

the growth of delamination at the crack tips and the damage accumulation due to stress 

concentrations around the crack. On the other hand, the inclined fracture angle under 

transverse compression and transverse shear loadings are usually destructive for the 

laminate. It leads to high instantaneous delamination’s and even the splitting of the 

laminate and may lead to the wedge effect. 

The Puck failure theory determines the angle of the fracture plane and uses the 

stresses acting on this plane to determine IFF. It is based on the formulations of Coulumb 

and Mohr. The Mohr hypothesis states that the fracture limit of a material is determined by 

the stresses acting on the fracture plane. This was originally stated for brittle isotropic 

materials and was adapted by Puck for the transversely orthotropic brittle composite 
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materials. The fracture plane is oriented parallel to the fiber direction and at an angle Ɵ to 

the thickness direction. The stresses acting on this action plane σn, 𝜏n1 and 𝜏nt are used to 

determine the IFF. The shear stresses 𝜏n1 and 𝜏nt can be combined to form the shear stress 

𝜏nψ. 

 
Figure 3.4 Stresses acting on the fracture plane 

 

These stresses are obtained from transforming the σ2, σ3, 𝜏21, 𝜏31 and 𝜏23 stresses as 

seen from the following: 

 {

𝜎𝑛(𝜃)

𝜏𝑛𝑡(𝜃)

𝜏𝑛1(𝜃)
} = [

   𝑐2   𝑠2       2𝑠𝑐      0 0
−𝑠𝑐 𝑠𝑐
0 0

(𝑐2 − 𝑠2) 0 0
       0         𝑠 𝑐

]

{
 
 

 
 
𝜎22
𝜎33
𝜏23
𝜏31
𝜏21}

 
 

 
 

 (3.5) 

Where, 

𝑐 = 𝑐𝑜𝑠𝜃     𝑎𝑛𝑑     𝑠 = 𝑠𝑖𝑛𝜃 

The Puck IFF criterion can be written as follows: 

For 𝜎𝑛 ≥ 0: 

𝑓𝐸𝐼𝐹𝐹
(𝜃) = √[(

1

𝑅⊥
𝐴𝑡 −

𝑝⊥𝜓
𝑡

𝑅⊥𝜓
𝐴 ) 𝜎𝑛(𝜃)]

2

+ (
𝜏𝑛𝑡(𝜃)

𝑅⊥⊥
𝐴 )

2

+ (
𝜏𝑛1(𝜃)

𝑅⊥∥
𝐴 )

2

+
𝑝⊥𝜓
𝑡

𝑅⊥𝜓
𝐴 𝜎𝑛(𝜃)           (3.6) 
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For 𝜎𝑛 < 0: 

𝑓𝐸𝐼𝐹𝐹
(𝜃) = √(

𝜏𝑛𝑡(𝜃)

𝑅⊥⊥
𝐴 )

2

+ (
𝜏𝑛1(𝜃)

𝑅⊥∥
𝐴 )

2

+ (
𝑝⊥𝜓
𝑐

𝑅⊥𝜓
𝐴 𝜎𝑛(𝜃))

2

+
𝑝⊥𝜓
𝑐

𝑅⊥𝜓
𝐴 𝜎𝑛(𝜃)                  (1.7) 

Where, 

𝑝⊥𝜓
𝑡,𝑐

𝑅⊥𝜓
𝐴 =

𝑝⊥⊥
𝑡,𝑐

𝑅⊥⊥
𝐴 cos

2 𝜓 +
𝑝⊥∥
𝑡,𝑐

𝑅⊥∥
𝐴 sin

2𝜓

cos2 𝜓 = 1 − sin2𝜓 =
𝜏𝑛𝑡
2

𝜏𝑛𝑡
2 + 𝜏𝑛1

2

𝑅⊥⊥
𝐴 =

𝑅⊥
𝑐

2(1 + 𝑝⊥⊥
𝑐 )

 

𝑅⊥
𝐴𝑡𝑎𝑛𝑑 𝑅⊥∥

𝐴  are the tensile strength perpendicular to fiber direction and the in-plane 

shear strength respectively, 𝑅⊥⊥
𝐴  is the fracture resistance due to transverse/transverse shear 

stressing. 𝜃𝑓𝑝 is the angle of the fracture plane and 𝑝⊥∥
𝑡,𝑐

, 𝑝⊥⊥
𝑡,𝑐

 are inclination parameters. 

𝑓𝐸𝐼𝐹𝐹
 is the failure effort or stress exposure of the inter fiber failure of the lamina. When 

the value of  𝑓𝐸 = 1  is reached, it is termed as the fracture condition of the lamina. 

If σn is a tensile stress it promotes IFF by assisting the shear stresses but if σn is a 

compressive stress it delays IFF by raising the fracture resistances against shear fracture. 

Therefore, separate equations are used to evaluate IFF under tensile and compressive σn 

[8]. 

The action plane orientated at the angle 𝜃𝑓𝑝 is the fracture plane, this is the angle at 

which the highest risk of fracture occurs. This angle is determined by calculating  𝑓𝐸𝐼𝐹𝐹
(𝜃) 

for all planes with angles ranging from 𝜃 = −90° to 𝜃 = 90° with 1° steps, and the plane 

with the largest stress exposure is the plane where fracture is to be expected.  

 [𝑓𝐸𝐼𝐹𝐹
(𝜃)]

𝑚𝑎𝑥
= 𝑓𝐸𝐼𝐹𝐹

(𝜃𝑓𝑝) (1) 
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The inclination parameters 𝑝⊥∥
𝑡,𝑐

, 𝑝⊥⊥
𝑡,𝑐

 are obtained from the (σ22,𝜏21) curves. 

However, it is difficult to obtain these parameters without doing a series of experiments to 

obtain this and thus Puck provided recommended values for these inclination parameters 

as listed below: 

 

Table 3.1: Recommended Values For Inclination Parameters 

 𝑝⊥∥
𝑐  𝑝⊥∥

𝑡  𝑝⊥⊥
𝑡,𝑐

 

GFRP 0.25 0.30 0.20-0.25 

CFRP 0.30 0.35 0.25-0.30 
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CHAPTER 4 

PROGRESSIVE FAILURE ANALYSIS OF A COMPOSITE LAMINA 

USING PUCK FAILURE CRITERIA 1

                                                 
1 Kodagali K, Tessema A, Kidane A. American Society of Composites, 2017 
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4.1 ABSTRACT 

This paper focuses on the progressive failure analysis of a composite at lamina scale 

using two different material property degradation models in an open hole specimen under 

uniaxial tension. Puck failure criterion is selected to detect the onset of damage. The 

ABAQUS user defined material subroutine UMAT was developed to apply the failure 

criteria and degradation models. A partial discount method and a gradual stiffness 

degradation is implemented in ABAQUS environment.  The damage initiation and 

progression obtained from the proposed model is compared with the observed experimental 

results from digital image correlation. The comparative study confirmed that the simulation 

results were in good agreement with the experimental results.  

Keywords: Progressive failure analysis, Stiffness Degradation, Puck failure 

criteria, DIC 

4.2 INTRODUCTION 

Fiber-reinforced composites have been established as competitive materials for naval, 

automotive and aerospace industry during the last few decades. Their high strength to low 

weight ratio attracts a lot of attention to applying it in different industries. Therefore, it is 

important to understand the deformation behavior and failure mechanisms of these of 

materials under mechanical loading. An imperative part of material behavior is the concept of 

damage. Most of the current failure criteria are developed at the lamina scale and hence it is 

necessary to see the effect of damage in this scale. A good understanding of initiation and 

propagation of damage in composites will help to predict the strength of the structure at a 

higher accuracy. There are a lot of experimental and FEM analysis about the damage 
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propagation at the laminate scale; however little work has been carried out explicitly at the 

lamina scale.  

There are a lot of failure criteria that have been developed over the past few 

decades. The most general failure criterion for composite materials is the Tensor 

Polynomial Criterion proposed by Tsai and Wu [1]. The other popular and well known 

failure criteria include those proposed by Tsai-Hill [2], Azzi-Tsai [3], Hoffman [4] and 

Chamis [5]. These criterions do not consider the heterogeneous nature of a lamina and do 

not provide the type of failure. The other type of failure criteria which considers the non-

homogeneous characteristics of the composites can be used to differentiate the failure 

modes in the material. Hart Smith proposed a generalized Tresca model which considers 

fiber shearing as a dominant failure mode [6]. Hashin-Rotem proposed a criterion that 

involves two failure mechanisms, one associated with fiber failure and the other with 

matrix failure, distinguishing between tension and compression [7]. 

There are other failure criteria including those by, S C Tan and R J Nuismer who 

proposed a progressive matrix cracking model in which the laminate is assumed to contain 

periodic cracks with even spacing [8]. H A Whitworth proposed a model to predict the 

stiffness degradation in composite laminates based on an assumed relation between the 

failure stiffness and the applied stress [9]. Yamada and Sun proposed a criterion 

considering the in situ shear strength coupled with the probabilistic nature of composite 

failure [10]. R. M. Christensen proposed a criterion where micromechanics was used to 

distinguish failure modes [11]. 

Puck and Schürmann built on the Hashin failure criteria, the fiber failure(FF) was 

dependent on material properties of the fiber instead of the properties of the ply, and the 
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inter-fiber failure(IFF) was differentiated into three including the transverse tension (mode 

A), moderate transverse compression (mode B), and large transverse compression (mode 

C). Also, an equation was proposed to determine the angle of the fracture plane [12]. Both 

the Hashin and the Puck and Schürmann criteria were 2D criteria ignoring interlaminar 

stresses. 

Later, Puck modified his criteria to include interlaminar stresses. The new failure 

criteria was termed as action-plane failure criteria wherein IFF was calculated based on 

stresses which act on planes parallel to the fiber and inclined at an angle θ with respect to 

the thickness direction [13]. 

The Verein Deutscher Ingenieure (VDI) provides a detailed description of the 

concepts and design of composites and the analysis using the Puck failure criteria and are 

incorporated in this work [14]. 

Once the damage is found to initiate by the failure criteria, the material properties 

are degraded to simulate the presence of cracks in the material. One of the popular and 

simple method is the Total Discount Method [15] wherein the stiffness are reduced to zero 

in the failed ply. Further work on stiffness reduction has been developed by Nahas [16] 

and Soden [17] among others. In the current work, a partial discount method [18] and a 

gradual stiffness reduction method [12-13] are utilized to model the degradation. 

In order to validate the Puck damage prediction model, the evolution of damage in 

a specimen must be observed. One approach is to utilize a non-destructive technique that 

will allow for the detection of damage evolution in a composite structure such as digital 

image correlation (DIC). In our work experiments are conducted with the help of DIC 

which provides full field deformation data on the specimen surface. 
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4.3 THEORY 

4.3.1 CONSTITUTIVE RELATION 

The constitutive models in a quasi-static stress analysis relates the state of strain to the state 

of stress. The material is considered as linear elastic and transversely orthotropic. The 

linear elastic stress–strain constitutive relation can be written as follows: 

  {ϵ} = [S]{σ} or {σ} = [C]{ϵ} (4.1) 

 C11 = E11(1 − v23v32)∆  (4.2) 

 C22 = E22(1 − v13v31)∆    (4.3) 

 C33 = E33(1 − v12v21)∆ (4.4) 

 C12 = E11(v21 − v31v23)∆ (4.5) 

 C13 = E22(v32 − v12v31)∆ (4.6) 

 C23 = E33(v31 − v21v32)∆  (4.7) 

 ∆= 1
1 − v12v21 − v23v32 − v31v13 − 2v21v32v13
⁄   (4.8) 

{
 
 

 
 
σ11
σ22

σ33
σ12
σ13
σ23}

 
 

 
 

=

[
 
 
 
 
 
C11 C12 C13
C12 C22 C23

C13 C23 C33

0       0        0
0       0        0
0       0        0

0 0 0
0 0 0
0 0 0

2G12 0 0
0 2G13 0
0 0 2G23]

 
 
 
 
 

{
 
 

 
 
ϵ11
ϵ22
ϵ33
ϵ12
ϵ13
ϵ23}

 
 

 
 

 (4.9) 

Where Cij are the material stiffness tensors vij are the Poisson ratio, Eij are the Young’s 

moduli and Gij are the shear moduli 

4.3.2 PUCK FAILURE THEORY 

Puck’s criteria for fiber fracture (FF) and inter-fiber fracture (IFF) of unidirectional 

reinforced composites are physically based on hypotheses and mathematical formulations 

appropriate for brittle fracture. The formulations of Coulomb [19], Mohr [20] and Paul [21] 
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are particularly important, which have been developed for quasi-isotropic materials. They 

have been adapted by Puck to the transversely orthotropic UD fiber/polymer composites. 

The action-plane fracture criteria is formulated using stresses σn, 𝛕nt and 𝛕n1 

instead of σ11, σ22, σ33, 𝛕12, 𝛕13, 𝛕23, which act on a plane parallel to the fibers and at 

an angle θ. These stresses are calculated with the aid of the following transformation: 

{

𝜎𝑛(𝜃)

𝜏𝑛𝑡(𝜃)

𝜏𝑛1(𝜃)
} = [

   𝑐2   𝑠2       2𝑠𝑐      0 0
−𝑠𝑐 𝑠𝑐
0 0

(𝑐2 − 𝑠2) 0 0
       0         𝑠 𝑐

]

{
 
 

 
 
𝜎22
𝜎33
𝜏23
𝜏31
𝜏21}

 
 

 
 

                     (4.10) 

Where, 

c=cosθ     and     s=sinθ 

In order to characterize certain types of stress, Puck introduces the concept of 

‘stressing’ [22], differentiating stresses into acting transverse (⊥) to the fiber direction or 

parallel ( || ) to the fiber direction. 

The Puck failure criterion can be written as follows: 

 fEFF
=

1

±R∥
t,c [σ11 − (v⊥∥ − v⊥∥f. mσf

E∥

E∥f
) (σ22 + σ33)] (4.11) 

 

𝑤𝑖𝑡ℎ {
+𝑅∥

𝑡 𝑓𝑜𝑟 [… ] ≥ 0

−𝑅∥
𝑐 𝑓𝑜𝑟 [… ] ≤ 0

 

For 𝜎𝑛 ≥ 0: 

 fEIFF(θ) = √[(
1

R⊥
At −

p⊥ψ
t

R⊥ψ
A 

) σn(θ)]

2

+ (
τnt(θ)

R⊥⊥
A )

2

+ (
τn1(θ)

R⊥∥
A )

2

+
p⊥ψ
t

R⊥ψ
A

σn(θ) (4.12) 
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For 𝜎𝑛 < 0: 

 

fEIFF
(θ) = √(

τnt(θ)

R⊥⊥
A

)

2

+ (
τn1(θ)

R⊥∥
A

)

2

+ (
p⊥ψ
c

R⊥ψ
A σn(θ))

2

+
p⊥ψ
c

R⊥ψ
A σn(θ)  

(4.13) 

Where, 

𝑝⊥𝜓
𝑡,𝑐

𝑅⊥𝜓
𝐴 =

𝑝⊥⊥
𝑡,𝑐

𝑅⊥⊥
𝐴 cos

2 𝜓 +
𝑝⊥∥
𝑡,𝑐

𝑅⊥∥
𝐴 sin

2𝜓

cos2 𝜓 = 1 − sin2𝜓 =
𝜏𝑛𝑡
2

𝜏𝑛𝑡
2 + 𝜏𝑛1

2

𝑅⊥⊥
𝐴 =

𝑅⊥
𝑐

2(1 + 𝑝⊥⊥
𝑐 )

 

 

Where, σ11, σ22 and σ33 are normal stresses in the lamina, ±𝑅∥
𝑡,𝑐  are the tensile and 

compressive strengths parallel to fiber direction, 𝑣⊥∥𝑓 is the fiber volume fraction, 𝑚𝜎𝑓 is the 

stress magnification factor, 𝐸∥𝑓 is the Young’s modulus of the fiber along the fiber direction, 

𝑅⊥
𝐴𝑡 is the tensile strength perpendicular to fiber direction, 𝑅⊥∥

𝐴  is the in-plane shear 

strength, 𝑅⊥⊥
𝐴 is the resistance offered against fracture due to transverse/ transverse shear 

stressing, 𝜃𝑓𝑝 is the angle of the fracture plane and 𝑝⊥∥
𝑡,𝑐

, 𝑝⊥⊥
𝑡,𝑐

are inclination parameters 

obtained from the (𝛕n1, σn) and (𝛕nt, σn) fracture curves respectively. 𝑓𝐸  is called the stress 

exposure and it is the ratio between the length of the vector of the stresses{σ} and the length 

of the corresponding fracture vector{σ}fr which have the same direction. When 𝑓𝐸 = 1 , it is 

termed as the fracture condition. 
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If σn is a tensile stress it assists the shear stresses in causing IFF, and if σn is a 

compressive stress it delays IFF due to the shear stresses. Therefore, separate equations are 

used to evaluate IFF [23]. 

The stress exposure 𝑓𝐸𝐼𝐹𝐹
(𝜃𝑓𝑝) is dependent on the angle of the fracture plane 𝜃. This 

angle is determined by calculating  𝑓𝐸𝐼𝐹𝐹
(𝜃) for angles ranging from 𝜃 = −90° to 𝜃 = 90°, 

and the plane with the largest stress exposure is the plane where fracture is to be expected.  

 [fEIFF
(θ)]

max
= fEIFF

(θfp) (4.14) 

The angle of the fracture plane is important in assessing failure, for example 

θ_fp≈90° indicates a high probability of delamination, if θ_fp>30° and σ_n<0 it indicates 

Mode C failure. The fracture plane in the mode C is different and it would be destructive 

for the laminate. One surface of the crack slides over the other surface of crack causing the 

local delamination or buckling of neighbors called the wedge effect [14]. 

The values of the inclination parameters recommended by Puck are used in the 

current work as shown in Table 4.1 [24]. 

Table 4.1: Recommended values for inclination parameters 

 

4.3.3 MATERIAL PROPERTIES DEGRADATION 

As the damage identified in the composite material, the appropriate approach 

should be applied to assess the damage growth until failure. Two methods have been 

compared for the material degradation after the damage was initiated. The first method is 

called element weakening method which is a partial discount method [19]. The second 

 𝑝⊥∥
𝑐  𝑝⊥∥

𝑡  𝑝⊥⊥
𝑡,𝑐

 

GFRP 0.25 0.30 0.20-0.25 

CFRP 0.30 0.35 0.25-0.30 
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method is the constant stress exposure method which is a gradual stiffness reduction 

method [12-13]. These degradation methods are defined in a smeared crack approach, 

wherein the degradation process is assumed as the growth of the crack density. 

4.3.3.1 ELEMENT WEAKENING METHOD (EWM) 

In this method, selected elastic properties of elements are degraded to zero when 

the stress exposure reaches a value of one. The modulus perpendicular to fibers and inplane 

shear modulus are degraded for IFF and all of the elastic properties are degraded in case of 

a FF. However, as this causes convergence issues in the FE software the values are instead 

degraded to a value close to zero. Depending on the failure mode the values of the damage 

variables are updated. For fiber failure under tension dft=1, under compression dfc=1; for 

matrix failure, due to σ_n>0, dmt=1, due to σ_n<0, dmc=1. The degradation rule for EWM 

used is as listed below: 

 𝑑𝑓 = (1 − 𝑑𝑓𝑡)(1 − 𝑑𝑓𝑐)  (4.15) 

 𝑑𝑚 = (1 − 𝑑𝑚𝑡)(1 − 𝑑𝑚𝑐) (4.2) 

 𝐶11
′ = (1 − 𝑑𝑓)𝐶11 (4.3) 

 𝐶22
′ = (1 − 𝑑𝑓)(1 − 𝑑𝑚)𝐶22 (4.18) 

 𝐶33
′ = (1 − 𝑑𝑓)(1 − 𝑑𝑚)𝐶33 (4.19) 

 𝐶12
′ = (1 − 𝑑𝑓)(1 − 𝑑𝑚)𝐶12  (4.20) 

 𝐶13
′ = (1 − 𝑑𝑓)(1 − 𝑑𝑚)𝐶13 (4.21) 

 𝐶23
′ = (1 − 𝑑𝑓)(1 − 𝑑𝑚)𝐶23 (4.22) 

 𝐺12
′ = (1 − 𝑑𝑓)(1 − 𝑑𝑚𝑐𝑠𝑚𝑐)(1 − 𝑠𝑚𝑡𝑑𝑚𝑡)𝐺12  (4.23) 

 𝐺23
′ = (1 − 𝑑𝑓)(1 − 𝑑𝑚𝑐𝑠𝑚𝑐)(1 − 𝑠𝑚𝑡𝑑𝑚𝑡)𝐺23 (4.24) 
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 𝐺31
′ = (1 − 𝑑𝑓)(1 − 𝑑𝑚𝑐𝑠𝑚𝑐)(1 − 𝑠𝑚𝑡𝑑𝑚𝑡)𝐺31 (4.25) 

Where df and dm are the total damage variables for the fiber and matrix respectively; 

dft, dfc, dmt, and dmc are the fiber and matrix damage variables in relation to the tensile and 

compressive stress states, respectively; and smt and smc are the loss control factors for the 

shear stiffness caused by the matrix tensile and compressive failures, respectively. In the 

present study, the loss control factors were set as smt = 0.9 and smc = 0.5. 

4.3.3.2 CONSTANT STRESS EXPOSURE METHOD (CSE) 

The gradual stiffness reduction method is based on the stress exposure 𝑓𝐸 . In this 

method when fiber failure occurs all the stiffness’ are degraded like the EWM approach 

and only the stiffness due to IFF are gradually reduced. This approach conserves the 

meaning of the value 𝑓𝐸 𝐼𝐹𝐹 = 1 as a fracture criterion, i.e. the lamina does not experience 

an IFF stress exposure above 1. When the stress exposure of a lamina reaches this value an 

IFF occurs and the lamina gets rid of parts of its load by redistribution. This is 

accomplished by incrementally degrading the stiffness based on the mode of damage to a 

value such that 𝑓𝐸 𝐼𝐹𝐹 will be equal to 1. The stiffness Ei and Gij are degraded unequally 

[23]. The progressive damage rule for CSE is: 

 E2
red = {

E2
orig

. (1 − dmt)            for  σn > 0

E2
orig

                                 for  σn < 0 
 (4) 

 G12
red = G12

orig
. (1 − k. dmt)(1 − k. dmc) (4.27) 

 G23
red = G23

orig
. (1 − k. dmt)(1 − k. dmc) (4.28) 
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4.4 ANALYSIS 

4.4.1 EXPERIMENTAL SETUP 

A single zero-degree lamina with a central hole was used with dimensions given in Table 

4.2 and configurations as shown in Figure 1. The specimen was loaded in uniaxial tension 

using an MTS810 machine with a loading rate of 0.05”/min. The material properties are 

listed in Table 4.3. DIC was used to capture the far-field global strain data. A 5MP camera 

with a 60mm Nikon lens was used to capture the gradual deformation of the speckled 

lamina during loading. A white light illumination is used to illuminate the speckled surface. 

The load at failure was determined to be 2805N. 

 

Table 4.2: Dimensions of the Test Specimen 

 Length Width Thickness Diameter of notch 

200 25 0.22 4 

 

Table 4.3: Material Properties Of Test Specimen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸11(𝐺𝑃𝑎) 82.867 

𝐸22(𝐺𝑃𝑎) 6.98 

𝐺12(𝐺𝑃𝑎) 13.24 

𝑉12 0.306 

𝑉23 0.28 

𝑉𝑓12 0.2 

𝐸𝑓1(𝐺𝑃𝑎) 130 

𝑅∥
𝑡(𝑀𝑃𝑎) 860 

𝑅∥
𝑐(𝑀𝑃𝑎) 620 

𝑅⊥
𝑡(𝑀𝑃𝑎) 37 

𝑅⊥
𝑐(𝑀𝑃𝑎) 75 

𝑅⊥∥(𝑀𝑃𝑎) 44.7 
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Figure  4.1 Test specimen Configuration. 

  

4.4.2 COMPUTATIONAL ANALYSIS PROCESS 

The commercial FEA software, ABAQUS was employed to simulate the model by 

using a user defined material behavior (UMAT subroutine). The composite was modeled 

with a load of 3000N being applied at one end and encastre boundary condition at the other 

end. Three-dimensional hexahedral element (C3D8R) was selected for FE simulation with 

a total of 15082 elements in the model. A small time step is used to help reduce 

nonlinearities in each step and hence improve the convergence. 

Figures 2 shows the algorithm for the two degradation models used. This procedure 

is carried out at all material calculation points of elements for each increment. The initial 

strain and the incremental strain are received from ABAQUS along with the material 

properties. If damage is noted at the point the elastic properties are appropriately degraded. 

After which the stiffness matrix and the resulting stresses are calculated and then used as 

input parameters for the Puck theory to detect damage. If the fracture condition is met, 

material properties are degraded and this process continues until f_E≤1 or the maximum 

degradation is reached. After this, the Jacobian and state variables are updated and these 

values are returned to ABAQUS. 
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   =    
 𝑡𝑎 𝑡 +    

 𝑛𝑐 𝑚 𝑛𝑡

Stiffness Matrix

Property Degradation

𝜎  

Angle of fracture plane, 𝜃𝑓𝑝

From ABAQUS

FF Criteria

IFF Criteria

Evaluate fE

Update Jacobian and State Variables

To ABAQUS

Damaged

𝑓𝐸 > 1𝑓𝐸 ≤ 1

No damage

 

Figure  4.2 Algorithm for ABAQUS subroutine 

 

4.4.3 RESULTS AND DISCUSSION 

The strain distribution from DIC and FEM are shown in Figure 3. The strains from 

the FEM are compared with the DIC a few steps before failure at a load of 2508N. A line 

of elements around the hole are concealed from the FE results to match the DIC condition. 

The finite element strain distribution is in good agreement with the experimental results 
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for the CSE method. The EWM method shows much higher strains as fiber failure is 

detected at a previous load state. 

 
Figure  4.3 Experimental and Finite Element strain distribution at 2508N. 

 

The results of the progressive damage from Puck criteria using the element 

weakening and constant stress exposure methods at increasing loading states are shown in 

Figure 4 and Figure 5 respectively. Initial matrix damage was observed at a load of 507.2N 

due to σ_n under tension. The matrix damage progressively increases tangential to the hole 

along the fiber direction in both the models. The contour of the damage due to EWM 

spreads more than the damage in the CSE. The partial discount degradation of EWM causes 

more elements to fail at a faster rate than the gradual degradation of CSE as the stiffness 

are instantly reduced causing higher strains to develop in the material. Final failure is 
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assumed at the first fiber breakage. For EWM fiber failure occurs at 2455N (12.4% error) 

while for CSE fiber failure occurs at 2637N (5.9%). Both the methods underpredicted the 

failure load but are within a reasonable limit.   

From these results, it can be perceived that matrix cracks occur in the sample and 

once fiber failure occurs the crack propagates along the damaged matrix. The damage from 

the experimental results can be seen in Figure 6. Both the models show good agreement 

with the experimental results. The CSE method provides more accurate strain correlation 

with the DIC. 

 

   Figure  4.4 Matrix damage propagation at different load steps using EWM. 

 

 
    Figure  4.5 Matrix damage propagation at different load steps using CSE. 
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Figure  4.6 Image taken after failure of 0-degree specimen (b) close-up of specimen. 

 

4.5 CONCLUSION 

In the current study, the Puck failure criteria is used to predict the initiation and 

propagation of damage in 0 degree CFRP lamina using two degradation methods. The 

failure criterion and degradation models are implemented in ABAQUS using a UMAT 

subroutine. The FEA results are in good agreement with the experimental results. The 

gradual degradation method is found to be better at predicting failure of the composite 

specimen with an error of 5.9%. However, CSE is computationally more expensive as it 

requires to find the amount by which to degrade the element when an IFF occurs whereas 

EWM directly degrades the material to the maximum degradation. The Puck criteria is a 

robust criterion which can be employed as a to estimate damage initiation and progression 

in composite laminates and structures.  
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CHAPTER 5 

PROGRESSIVE FAILURE ANALYSIS OF A COMPOSITE 

LAMINATE USING THE PUCK FAILURE CRITERIA2

                                                 
2 Kodagali K, Kidane A. In Preparation 
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5.1 ABSTRACT 

During the last few decades fiber reinforced composites have been used in various 

engineering structures and applications, especially their use in the naval, automotive and 

aerospace industries. These composite materials have high tensile strength and are 

lightweight, non-corrosive and can be tailored specifically for the product requirement. A 

safe design of such materials needs an adept  and robust failure prediction under various 

loading conditions. 

There have been a lot of failure criteria’s proposed in literature. A recent study has 

found that the industrial usage of composite failure criteria’s is limited to some of the 

simpler criteria’s inbuilt into the finite element software’s but these are unable to accurately 

capture damage and failure in the material [1].  The failure criteria can be broadly classified 

into criteria which do not distinguish between the different types of failure modes and those 

which do associate with a failure mode. All polynomial and tensorial failure criteria do not 

associate with any failure mode. The most commonly used polynomial failure criteria is 

the one poposed by Tsai and Wu [2]. Other prominent quadratic failure criteria include 

those by Tsai-Hill [3], Azzi-Tsai [4], Hoffman [5] and Chamis [6]. These criteria do not 

consider the heterogeneous nature of composite materials. These global fracture criteria 

are usually based on the von-Mises yielding criteria and can only be regarded as an 

interpolating formula as FRP usually show brittle fracture without major plastic 

deformation. The maximum stress and maximum strain criteria are the simplest criteria 

which takes into account the different failure modes. Other prominent criteria which 

differentiate failure modes include those by Hart-Smith [7], Yamada-Sun [8], Hashin-

Rotem [9], Christensen [10], Puck [11] and Cuntze [12]. 
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The Hashin failure criteria separated failure in the fiber and failure in the matrix 

under tensile and compressive stresses. Puck and Schürmann modified the Hashin criteria, 

the fiber failure (FF) depended on the properties of the fiber instead of the properties of the 

ply, the inter fiber failure (IFF) was separated into three equations including transverse 

tension, moderate transverse compression and large transverse compression. An equation 

to identify the angle of the fracture plane was also proposed. Puck based this failure criteria 

on the mechanics of brittle fracture. Both the Hashin and the Puck and Schürmann criteria 

were 2D criteria ignoring the effects of interlaminar stresses in the laminae 

Later, Puck included interlaminar stresses and the new 3D Puck failure criteria was 

coined the action-plane failure criteria. In this the IFF was calculated using stresses action 

on a fracture plane which act on a plane parallel to the fibers and at angle θ to the thickness 

direction. The Puck criteria helps to identify the different failure modes in the lamina and 

to quantify the effect each type of failure has on the laminate [13].  

When coupled with adequate degradation models, the Puck criteria can provide a 

good prediction of progressive failure and load redistribution. Once failure is initiated, the 

material properties are degraded to simulate the presence of cracks in the material. The 

presence of FF or IFF does not usually indicate the final failure of the specimen, but as 

damage accumulates in the material, it eventually fails. There have been a number of 

degradation models developed for damage in composites. The degradation procedure can 

be applied using damage mechanics or phenomenological approaches. Damage mechanics 

approaches generally have a representation of the damage and the law for the growth of the 

damage. The model by Li, Reid and Soden is an example of the damage mechanics based 

degradation. Phenomenological models are based on a stress/strain analysis instead of a 
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damage representation law. Total and partial ply discount are an example of 

phenomenological models wherein after IFF the parameters are degraded to zero based on 

the mode of damage. 

The Verein Deutscher Ingenieure (VDI-2014 part3) (English: Association of 

German Engineers) provides a comprehensive description of the design of composites and 

failure analysis and degradation using the Puck failure criteria. Many of the 

recommendations from this are implemented in this work. 

The World Wide Failure Exercise (WWFE-I and WWFE-II) conducted by Hinton, 

Kaddour and Soden invited the authors of many of the prominent failure criteria to take 

part in and compare the capabilities and the limitations of their criteria. A number of test 

cases and guidelines were provided and the participants provided the failure predictions 

based on their criteria. The organizers then provided the experimental data to validate the 

predictions. The organizers then analyzed and compiled all the results [14]. The Puck 

criteria was found to perform very well in almost all cases. 

In the current study, the damage initiation and progression was carried out using 

the Puck failure criteria. The property degradation was carried out using the gradual 

stiffness degradation method. This model was implemented in the commercial finite 

element program ABAQUS using a user defined subroutine UMAT to implement the Puck 

criteria and property degradation. A model for unidirectional composite materials involves 

the examination of the constitutive relation to relate the state of stress to the state of strain, 

a failure criteria to determine initiation of damage in conjunction with a damage 

progression law for the evolution of damage in the material. 
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In order to validate the model, progressive failure analysis of composite laminates 

with a central hole is carried out under in-plane tensile loading. The results of these analysis 

are compared with the models from Tan [15], Chang and Chang [16] and J.F. Chen[17]. 

The results from the Puck failure criteria are found to be in good agreement with the test 

data reported in literature. 

5.2 THEORY 

5.2.1 CONSTITUTIVE RELATION 

 

A linear elastic, transversely orthotropic stress-strain constitutive response is used in 

the model. The constitutive model is used to calculate the stress in the material using the 

material properties and the current strain in the material. The constitutive model is as follows: 

       {ϵ} = [S]{σ} or {σ} = [C]{ϵ} (5.1) 

 C11 = E11(1 − v23v32)∆  (5.2) 

 C22 = E22(1 − v13v31)∆ (5.3) 

 C33 = E33(1 − v12v21)∆ (5.4) 

 C12 = E11(v21 − v31v23)∆ (5.5) 

 C13 = E22(v32 − v12v31)∆ (5.6) 

 C23 = E33(v31 − v21v32)∆ (5.7) 

 ∆= 1
1 − v12v21 − v23v32 − v31v13 − 2v21v32v13
⁄   (5.8) 

 

{
 
 

 
 
σ11
σ22

σ33
σ12
σ13
σ23}

 
 

 
 

=

[
 
 
 
 
 
C11 C12 C13
C12 C22 C23

C13 C23 C33

0       0        0
0       0        0
0       0        0

0 0 0
0 0 0
0 0 0

2G12 0 0
0 2G13 0
0 0 2G23]

 
 
 
 
 

{
 
 

 
 
ϵ11
ϵ22
ϵ33
ϵ12
ϵ13
ϵ23}

 
 

 
 

  (5.9) 
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Where Cij are the material stiffness tensors v_ij are the Poisson ratio, Eij are the Young’s 

moduli and Gij are the shear moduli. 

5.2.2 PUCK FAILURE THEORY  

The Puck failure criteria has been developed for transversely orthotropic 

unidirectional laminates. The concept of ‘stressing’ is introduced to characterize the types of 

stress. The stress are differentiated into those acting transverse (⊥) to the fiber direction or 

parallel ( || ) to the fiber direction. The Fiber Failure (FF) of a lamina under a combined load 

occurs when the stress in the fibers reaches the value of the stress at a FF of the lamina under 

uniaxial tensile or compressive stresses. Fiber failure is the breakage of a large number of 

fibers and is generally regarded as final failure of the damaged lamina. The fiber failure 

criteria can be written as follows: 

 fEFF
=

1

±R∥f
t,c [σ11 − (v⊥∥ − v⊥∥f. mσf

E∥

E∥f
) (σ22 + σ33)] (5.10) 

 𝑤𝑖𝑡ℎ {
+𝑅∥

𝑡 𝑓𝑜𝑟 [… ] ≥ 0

−𝑅∥
𝑐 𝑓𝑜𝑟 [… ] ≤ 0

  

Where fEFF
 is the fiber failure stress exposure of the lamina, ±𝑅∥𝑓

𝑡,𝑐
are the effective 

tensile and compressive strengths of the fiber parallel to fiber direction, σ11, σ22 and σ33 are the 

normal stresses acting in the lamina, v⊥∥ and v⊥∥f are the major Poisson’s ratio of the lamina 

and of the fibers respectively, 𝐸∥ and 𝐸∥𝑓 are the longitudinal modulus of the lamina and the 

fibers respectively. mσf is a stress magnification factor for transverse stresses in the fibers. 

The values proposed by Puck for the magnification factor are mσf = 1.1 for CFRP and 

mσf = 1.3 for GFRP, this is because the Young’s modulus for glass fibers is higher than 

that of carbon fibers. The relation between the effective strengths and the material strengths 

is given as: 
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 ±R∥f
t,c = 

E∥f

E∥
±R∥

t,c (5.11) 

Puck’s Inter Fiber Failure (IFF) is based on the formulation of Paul [18], Coulomb 

[19] and Mohr [20]. FRP usually display brittle behavior, fracture occurs suddenly without 

major plastic deformation. Paul called such material ‘intrinsically brittle’. Mohr’s fracture 

hypothesis for brittle materials states that the fracture limit of a material is determined by the 

stresses acting on the fracture plane. This was originally stated for brittle isotropic material, 

Puck adapted this to model transversely orthotropic unidirectional laminas. This action-plane 

fracture criteria is formulated using stresses σn, 𝛕nt and 𝛕n1 which act on a plane parallel to the 

fibers and at an angle 𝜃 to it. These stresses are calculated with the assistance of the following 

transformation: 

 {

𝜎𝑛(𝜃)

𝜏𝑛𝑡(𝜃)

𝜏𝑛1(𝜃)
} = [

   𝑐2   𝑠2       2𝑠𝑐      0 0
−𝑠𝑐 𝑠𝑐
0 0

(𝑐2 − 𝑠2) 0 0
       0         𝑠 𝑐

]

{
 
 

 
 
𝜎22
𝜎33
𝜏23
𝜏31
𝜏21}

 
 

 
 

  (5.12) 

Where, 𝑐 = 𝑐𝑜𝑠𝜃     𝑎𝑛𝑑     𝑠 = 𝑠𝑖𝑛𝜃 

The Puck IFF criterion can be written as follows: 

 

For 𝜎𝑛 ≥ 0: 

 

fEIFF
(θ) = √[(

1

R⊥
At

−
p⊥ψ
t

R⊥ψ
A )σn(θ)]

2
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)
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t

R⊥ψ
A σn(θ) 

(5.13) 

For 𝜎𝑛 < 0: 
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(5.14) 

Where, 

𝑝⊥𝜓
𝑡,𝑐

𝑅⊥𝜓
𝐴 =

𝑝⊥⊥
𝑡,𝑐

𝑅⊥⊥
𝐴 cos

2 𝜓 +
𝑝⊥∥
𝑡,𝑐

𝑅⊥∥
𝐴 sin

2𝜓

cos2 𝜓 = 1 − sin2𝜓 =
𝜏𝑛𝑡
2

𝜏𝑛𝑡
2 + 𝜏𝑛1

2

𝑅⊥⊥
𝐴 =

𝑅⊥
𝑐

2(1 + 𝑝⊥⊥
𝑐 )

 

𝑅⊥
𝐴𝑡𝑎𝑛𝑑 𝑅⊥∥

𝐴  are the tensile strength perpendicular to fiber direction and the in-plane 

shear strength respectively, 𝑅⊥⊥
𝐴  is the fracture resistance due to transverse/transverse shear 

stressing. 𝜃𝑓𝑝 is the angle of the fracture plane and 𝑝⊥∥
𝑡,𝑐

, 𝑝⊥⊥
𝑡,𝑐

 are inclination parameters. 

𝑓𝐸𝐼𝐹𝐹
 is the failure effort or stress exposure of the inter fiber failure of the lamina. When the 

value of  𝑓𝐸 = 1  is reached, it is termed as the fracture condition of the lamina. 

If σn is a tensile stress it promotes IFF by assisting the shear stresses but if σn is a 

compressive stress it delays IFF by raising the fracture resistances against shear fracture. 

Therefore, separate equations are used to evaluate IFF under tensile and compressive σn [21]. 

The action plane orientated at the angle 𝜃𝑓𝑝 is the fracture plane, this is the angle at 

which the highest risk of fracture occurs. This angle is determined by calculating  𝑓𝐸𝐼𝐹𝐹
(𝜃) 

for all planes with angles ranging from 𝜃 = −90° to 𝜃 = 90° with 1° steps, and the plane 

with the largest stress exposure is the plane where fracture is to be expected.  

 [fEIFF
(θ)]

max
= fEIFF

(θfp) (5.15) 
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The angle of the fracture plane is important in assessing failure, for if 𝜃𝑓𝑝 > 30° and 

𝜎𝑛 < 0 it indicates Mode C failure. The fracture plane in the mode C is different and it would 

be destructive for the laminate. One surface of the crack slides over the other surface of crack 

causing the local delamination or buckling of neighbors called the wedge effect [22]. 

The values of the inclination parameters recommended by Puck are used in the current 

work as shown in Table I [23]. 

 

Table 5.1: Recommended values for inclination parameters 

 

According to Mohr’s hypothesis, σ1 does not influence IFF as the action plane inclined 

at 𝜃𝑓𝑝 is perpendicular to σ1. However, some effects make it necessary to include σ1 in the IFF 

criteria as sometimes fibers will have fractured before the FF limit is reached, microfractures 

in the fiber may also occur leading to local debonding at the fiber matrix interphase. To 

include these effects a degradation factor due to the weakening caused by σ1, 𝜂𝑤1 is multiplied 

to the action plane fracture resistances leading to higher stress exposure values. Therefore, the 

stress exposure is divided by 𝜂𝑤1 to obtain the failure effort including the influence of σ1. 

𝜂𝑤1 =
𝑐(𝑎√𝑐2(𝑎2 − 𝑠2) + 1 + 𝑠

(𝑐𝑎)2 + 1
 

With 𝑐 =
𝑓𝐸0(𝐼𝐹𝐹)

𝑓𝐸(𝐹𝐹)
 and 𝑎 =

1− 

√1−𝑚2
, for the current work s=m=0.5 

5.2.3 MATERIAL PROPERTIES DEGRADATION 

The Puck failure criteria is stress based failure criteria that describes the maximum 

bearable stress state in a layer. When the stress exposure value reaches one, failure is assumed 

 𝑝⊥∥
𝑐  𝑝⊥∥

𝑡  𝑝⊥⊥
𝑡,𝑐

 

GFRP 0.25 0.30 0.20-0.25 

CFRP 0.30 0.35 0.25-0.30 
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to occur in the material. Damage in the material is simulated using the smeared crack 

representation whereby the cracks are not discrete local discontinuities but only their effect 

on the material property is considered. The presence of cracks in a mechanical sense is the 

reduction of the stiffness of the lamina. Thus, a degradation of the elastic moduli due to the 

presence of cracks is carried out which leads to a redistribution of stresses. The Constant Stress 

Exposure (CSE) method is the degradation law used in this model. The degradation process 

is assumed as the growth of crack density in the material. 

5.2.3.1 CONSTANT STRESS EXPOSURE METHOD (CSE) 

The constant stress exposure method is a gradual stiffness degradation method based 

on the failure effort, 𝑓𝐸 . This method conserves the failure condition of 𝑓𝐸 𝐼𝐹𝐹 = 1, i.e. the 

lamina at no point experiences a stress exposure value greater than one. When the stress 

exposure reaches or exceeds this value, load is redistributed in the lamina by incrementally 

increasing the degradation until the value of the failure effort is equal to one. The stiffness Ei 

and Gij are unequally degraded by a factor ‘k’ [24]. The suggested values for ‘k’ are, k=77% 

for CFRP and k=41% for GFRP. The progressive damage rule for CSE is: 

 Ei
red = {

Ei
orig

. (1 − dmt)            for  σn > 0

 Ei
orig

                                for  σn < 0 
                               (5.5) 

 Gij
red = Gij

orig
. (1 − k. dmt)(1 − k. dmc)                                     (5.17) 

This approach neglects the damage evolution process and depends only on the load 

redistribution up till the failure effort reaches a value of one and generally predicts an 

unrealistically smooth degradation process [24]. 
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5.2.4 COMPUTATIONAL PROCESS 

A user defined material (UMAT) subroutine was developed for implementing the 

model and is used in conjunction with the commercial finite element software, ABAQUS. 

Figure 1 shows the algorithm followed by the subroutine.  

 

   =    
 𝑡𝑎 𝑡 +    

 𝑛𝑐 𝑚 𝑛𝑡

Stiffness Matrix

Property Degradation

𝜎  

Angle of fracture plane, 𝜃𝑓𝑝

From ABAQUS

FF Criteria

IFF Criteria

Evaluate fE

Update Jacobian and State Variables

To ABAQUS

Damaged

𝑓𝐸 > 1𝑓𝐸 ≤ 1

No damage

 

          Figure 5.1 Algorithm for ABAQUS subroutine 

ABAQUS calls the subroutine at the start of the increment and provides the initial and 

incremental strain along with the material properties. Using the constitutive equations, the 

stiffness matrix and the stress is calculated. This is then used as input parameters for the Puck 

failure criteria to detect damage in the material. If the stress exposure values reach or exceed 
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one, property degradation is carried out at the point until 𝑓𝐸 ≤ 1or the maximum degradation 

has been reached. This process is carried out at every integration point in the material for each 

increment. 

5.3. ANALYSIS 

Progressive failure analysis of rectangular laminates with a through thickness hole 

loaded under in-plane tension was carried out. Four different dimensions were considered for 

the analysis as listed in Table 5.2. The analysis was implemented for three different layups – 

[0/(±45)3/903], [0/(±45)2/905], [0/(±45)1/907] for each of the dimensions listed for a total of 12 

cases. The material is T300/1034C carbon/epoxy laminate and the properties are listed in 

Table 5.3, and were taken from the paper published by Miami et al [29]. The longitudinal 

modulus of the fiber, 𝐸∥𝑓 was obtained from the datasheet of the material [25]. The volume 

fraction for the material was taken from [26].  

The laminates were modeled using the composite layup option available in ABAQUS 

with 3 integration points through the thickness of each layer. A quarter of the model was 

simulated due to the symmetry of the balanced laminate. Symmetry boundary conditions were 

employed along the x and y symmetry planes. The geometry of the employed model can be 

seen in figure 2. An equation constraint interaction was employed at the loading surface with 

displacement controlled loading being applied at a reference node so that the displacements 

of the loading surface would be uniform across the nodes on that surface. This is done so that 

the reaction force and displacement of the surface can be obtained at the reference node. The 

laminate was modelled using C3D8R solid elements.  
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Table 5.2: Material Properties of T300/1034C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 Geometry and Boundary conditions of the laminate from [26]. 

 

Table 5.3: Dimensions of the composites 

Label Length (mm) Height (mm) Width (mm) Diameter (mm) 

A 203.2 2.616 19.05 3.175 

B 203.2 2.616 38.1 6.35 

C 203.2 2.616 12.7 3.175 

D 203.2 2.616 25.4 6.35 

5.3.1 RESULTS 

The results of the finite element analysis are shown in table 3. The failure stress in the 

model is obtained by using the formula, 𝜎𝑢 = 𝑃𝑢/(𝑊 ∗ 𝐻), where Pu is the load at failure and 

W and H are the width and the height of the specimen respectively and were compared with 

E1 (GPa) 146.8 

E2 (GPa) 11.4 

G12 (GPa) 6.1 

V12 0.3 

V23 0.3 

EF1 (GPa) 230 

VF12 0.2 

XT (MPa) 1730 

XC (MPa) 1379 

YT (MPa) 66.5 

YC (MPa) 268.2 

S12 (MPa) 58.7 
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the results taken from [26] wherein a combined elastoplastic model is tested for the same cases 

against predictions by Chang and Chang[27], Tan[28], Miami[29] and the experimental data 

from Chang et al[30].  

 

 

Table 5.4: Comparison of Failure Stress and Percentage Error 

Layup Label Failure Stress (MPa) Error (%) 

  Present Chen Chang Tan Miami 
Test 

Data 
Present Chen Chang Tan Miami 

[0/(±45)3/903]s A 271.69 293.07 227.53 275.75 - 277.17 -1.97 5.74 -17.91 -0.5 - 

[0/(±45)3/903]s B 250.42 252.22 206.84 275.79 - 256.48 -2.36 -1.66 -19.35 7.53 - 

[0/(±45)3/903]s C 227.79 269.05 206.84 262.00 - 226.15 0.72 18.97 -8.54 15.85 - 

[0/(±45)3/903]s D 232.21 238.30 179.26 248.21 263.1 235.8 -1.52 1.06 -23.98 5.26 11.6 

[0/(±45)2/905]s A 220.32 239.13 193.05 186.16 - 236.49 -6.8 1.12 -18.37 -21.28 - 

[0/(±45)2/905]s B 200.96 214.30 172.37 186.16 - 204.08 -1.52 5.00 -15.54 -8.78 - 

[0/(±45)2/905]s C 187.97 216.28 165.47 172.37 - 177.88 5.67 21.58 -6.98 -3.10 - 

[0/(±45)2/905]s D 193.23 205.83 151.68 158.58 200.1 185.47 4.18 10.98 -18.22 -14.50 7.7 

[0/(±45)3/907]s A 166.35 171.03 144.79 227.53 - 190.98 -12.89 -10.45 -24.19 19.13 - 

[0/(±45)3/907]s B 148.52 150.36 124.11 227.53 - 158.58 -6.34 -5.18 -21.74 43.48 - 

[0/(±45)3/907]s C 140.68 154.96 124.11 213.74 - 134.45 4.63 15.25 -7.69 58.97 - 

[0/(±45)3/907]s D 146.7 135.67 103.42 199.95 148.2 159.96 -8.28 15.19 -35.34 25.00 -7.4 

 

The Chen model has a high error percentage in models with layup dimensions C. It 

was found that layup C which is the smallest laminate in the tests requires a smaller mesh 

size than the other models to give satisfactory results. 

The progressive damage buildup in the individual laminates is displayed for the 

[0/(±45)1/907]s laminate for label C. Figures 4,5 and 6 display the damage progression in the 
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0,45 and 90 degree plies of the laminate respectively. The damage first initiates in the 90 ply 

with IFF due to tensile forces. Damage then initiates in the 45 plies as it continues to 

accumulate in the 90 ply. The matrix damage in both these plies primarily follows the fiber 

direction. Finally, fiber failure due to tension occurs in the 0 ply and this propagates 

perpendicular to the zero degree fibers. This failure causes very high stresses on the 

neighboring plies and causes all plies to fail in the same direction as the 0 plies even though 

damage previously occurs and was propagating along the fiber directions in the 45 degree ply. 

Final failure occurs when damage propagates across the width for each of the plies. 

 

 

Figure 5.3 Damage propagation in 0 degree layer 

 

 

Figure 5.4 Damage propagation in 45 degree layer 
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Figure 5.5 Damage propagation in the 90 degree layer 

5.4 CONCLUSION 

In the current work, the Puck failure criteria is successfully enforced to simulate 

the progressive failure of composite laminates under uniaxial tension. The results are in 

good agreement with the experimental data. The Puck criteria is a robust criterion capable 

of evaluating the progressive failure and does not require the calibration of any of the 

parameters. This can be applied to larger structures of composite materials to accurately 

model the progressive failure. However, it should be noted that the analysis time is 

relatively higher as the Puck criteria requires to iteratively obtain the angle of the fracture 

plane at each integration point for each increment.  
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS

6.1 SUMMARY 

In the present study, a user material subroutine (UMAT) is developed in the FORTRAN 

environment for the commercially available finite element package ABAQUS. The 

developed code successfully estimates the progressive failure of the composite materials 

using the Puck failure criteria. 

The following conclusions can be drawn from the results of this work: 

• The failure stresses can be accurately predicted for composite laminates. 

• The Puck failure criteria is a powerful failure criteria that can predict matrix damage 

in the material based on a physically sound hypothesis, adapted from Mohr’s 

hypothesis. 

• The model when coupled with a degradation model can be used to accurately 

predict the post failure degradation behavior. 

• The Constant Stress Exposure (CSE) method is found to be better than the Element 

Weakening Method at evaluating the response of a material. However, it is also 

computationally more expensive. 

• The proposed model can be applied to perform the failure analysis for larger, 

complex composite structures  
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• Only the material properties and material strengths are required to apply this failure 

criteria. 

6.2 RECOMMENDATIONS 

 The following recommendations can be made with regards to future work to be 

conducted: 

• The Puck criteria is computationally much more expensive than most other failure 

criteria as it requires a sequential computation for the angle of the fracture plane at 

each point. A more efficient method can be developed to find the angle of the 

fracture plane with fewer iterations. 

• The model is highly mesh dependent, thus a process to reduce the mesh dependency 

would help to increase the efficiency of the model. 

• A proper degradation model due to the FF must be set up. Currently FF is regarded 

as the final failure of the lamina in the Puck failure theory and little work has been 

done on the degradation laws for these damage modes. 

 

 



 

65 

BIBLIOGRAPHY

A S Kaddoura, M J Hintonb , S Lic and P A Smithd :The world-wide failure exercises: 

how can composites design and manufacture communities build their strength 

 

A S Koumpias , K I Tserpes and S Pantelakis, ‘Progressive Damage Modeling of 3D Fully 

Interlaced Woven Composite Materials’, Fatigue and Fracture of Engineering Materials 

and Structures (2014), 37:696-706 

 

A. Puck, J. Kopp, and M. Knops. Guidelines for the determination of the parameters in 

Puck’s action plane strength criterion. Composites Science and Technology, 62(3 & 

9):371–378 & 1275, 2002. 

 

Alexandros E Antoniou, Christoph Kensche and Theodore P Philippidis, ‘Mechanical 

behavior of glass/epoxy tubes under combined static loading, validation of FEA 

progressive damage model’, Composites Science and Technology (2009), 69:2248–2255 

 

Bartley-Cho J, Lim S G, Hahn h T and Shyprykevich P, ‘Damage accumulation in quasi-

isotropic graphite/epoxy laminates under constant amplitude fatigue and block loading’, 

Composites Science and Technology (1998), 58:1535-1547 

 

Brett A Bednaryck, Bertram Stier, Jaan-W Simon and Evan J Pineda, ‘Meso- and Micro-

Scale Modeling of Damage in Plain Weave Composites’, Composite Structures (2015), 

121:258-270 

 

C D M Liljedahl, A D Crocombe, M A Wahab and I A Ashcroft, ‘The effect of residual 

strains on the progressive damage modelling of environmentally degraded adhesive joints’, 

Journal of Adhesion Science and Technology (2012), 7:525-547 

 

Chang FK, Chang KY. A progressive damage model for laminated composites containing 

stress concentrations. J Compos Mater 1987;21(9):834–55. 

 

 Chang FK, Scott RA, Springer GS. Strength of bolted joints in laminated composites. 

Technical Report AFWAL-TR-84-4029, Air Force Wright Aeronautical Laboratories; 

1984. 

 

C T McCarthy , R M O’Higgins and R M Frizzell, ‘A Cubic Spline Implementation of Non-

Linear Shear Behavior in Three Dimensional Progressive Damage Model for Composite 

Laminates’, Composite Structures (2010), 92:173-181 

 



 

66 

C. Schuecker and H.E. Pettermann, ‘Fiber Reinforced Laminates: Progressive Damage 

Modeling Based on Failure Mechanisms’, Arch Comput Methods Eng (2008), 15: 163–

184 

 

Ciaran R Kennedy, Conchur M O Bradaigh and Sean B Leen, ‘A Multi-axial Fatigue 

Damage Model for Fiber Reinforced Polymer Composites’, Composite Structures (2013), 

106:201-210 

Dahlen C and Springer G S, ‘Delamination growth in composites under cyclic loading’, 

Journal of Composite Materials (1994), 28:732-781 

 

F Cesari, V Dal Re, G Minak and A Zucchelli, ‘Damage and residual strength of laminated 

carbon-epoxy composite circular plates loaded at the center’, Composites: Part A (2007), 

38:1163–1173 

 

Fu-Kuo Chang  and Kuo-Yen Chang, ‘A Progressive Damage Model for Laminated 

Composites Containing Stress Concentrations’, Journal of Composite Materials (1987), 

21:834-855 

 

H A Whitworth, ‘A stiffness degradation model for composite laminates under fatigue 

loading’, Composite Structures (1998), 40.2:95-101 

 

H. Matthias Deuschle. 3D Failure Analysis of UD Fibre Reinforced Composites: Puck’s 

Theory within FEA. Thesis, Faculty of Aerospace Engineering and Geodesy of the 

Universitat Stuttgart 

 

Hinton, M.J.Benchmarking of triaxial failure criteria for composite laminates: Comparison 

between models of ‘Part (A)’ of ‘WWFE-II’ JOURNAL OF COMPOSITE MATERIALS, 

46(19–20) 2595–2634,2012 

 

J.F. Chen, E.V. Morozov , K. Shankar. A combined elastoplastic damage model for 

progressive failure analysis of composite materials and structures. Composite Structures 

94 (2012) 3478–3489 

 

J N Yang, D L Jones, S H Yang and A Meskini, ‘A Stiffness Degradation Model for 

Graphite/Epoxy Laminates’, Journal of Composite Materials (1990), 24:753-769 

 

John Montesano, Marina Selezneva, Martin Levesque and Zouheir Fawaz, ‘Modeling 

Fatigue Damage Evolution in Polymer Matrix Composite Structures and Validation Using 

in-situ Digital Image Correlation’, Composite Structures (2015), 125:354-361 

 

K I Tserpes, P Papanikos and Th Kermanidis, ‘A three-dimensional progressive damage 

model for bolted joints in composite laminates subjected to tensile loading’, Fatigue and 

Fracture of Engineering Materials and Structures (2001), 24:663–675 

 



 

67 

Lee, Chi-Seung, et al. "Initial and progressive failure analyses for composite laminates 

using Puck failure criterion and damage-coupled finite element method." Composite 

Structures 121 (2015): 406-419. 

 

M Ridha, C H Wang, B Y Chen and T E Tay, Modeling Complex Progressive Failure in 

Notched Composites Laminates with Varying Sizes and Stacking Sequence’, Composites: 

Part A (2014), 58:16-23 

 

Maimí P, Camanho PP, Mayugo JA, Dávila CG. A continuum damage model for 

composite laminates: part II – computational implementation and validation. Mech Mater 

2007;39(10):909–19. 

 

Mahmood M Shokrieh and Larry B Lessard, ‘Progressive Fatigue Damage Modeling of 

Composite Materials, Part I: Modeling’, Journal of Composite Materials (2000), 34:1056-

1080 

P C Wang, S M Jeng and J M Yang, ‘Characterization and modeling of stiffness reduction 

in SCS-6-Ti composites under low cycle fatigue loading’, Materials Science and 

Engineering (1995), A200:173-180 

 

Polymer Composites, The World-Wide Failure Exercise. Amsterdam:Elsevier 2004 

 

Puck A.: Progress in Composite Component Design through Advanced Failure Models. 

Proceedings of the 17th SAMPE Europe Conference; Basel, Switzerland, 1996, pp. 83–96 

 

Puck, A. and Schürmann, H.: Failure analysis of FRP laminates by means of physically 

based phenomenological models. Part A; Composites Science and Technology 58 (1998) 

7, pp. 1045–1067 

 

Puck, A., Kopp, J. and Knops, M.: Guidelines for the determination of the parameters in 

Puck’s action plane strength criterion. Composites Science and Technology 62 (2002) 3, 

pp. 371–378 and 9, p. 1275 

 

Puck, A.: Festigkeitsberechnung an Glasfaser Kunststoff Laminaten bei zusammen 

gesetzter Beanspruchung;Bruchhypothesen und schichtenweise Bruchanalyse (Strength 

analysis on GRP-laminates under combined stresses; fracture hypotheses and layer-by-

layer fracture analysis), Kunststoffe, German Plastics 59 (bilingual edition English and 

German), (1969), pp 18–19, German text 780–787 

 

S C Tan and R J Nuismer, ‘A Theory for Progressive Matrix Cracking in Composite 

Laminates’, Journal of Composite Materials (1989), 23:1029-1047 

 

Stephen R Hallet and Michael R Wisnom, ‘Numerical Investigation of Progressive 

Damage and the Effect of Layup in Notched Tensile Tests’, Journal of Composite Materials 

(2006), 40:1229-1245 

 



 

68 

Tan SC. A progressive failure model for composite laminates containing openings. J 

Compos Mater 1991;25(5):556–77. 

 

T Kevin O’Brien and Kenneth L Reifsnider, ‘Fatigue Damage Evaluation through Stiffness 

Measurements in Boron-Epoxy Laminates’, Journal of Composite Materials (1981), 15:55-

70 

 

Talrja R, ‘Stiffness properties of composite laminates with matrix cracking and interior 

delamination’, Engineering Fracture Mecanics (1986), 25:751-762 

 

Timothy W Coats and Charles E Harris, ‘Experimental Verification of a Progressive 

Damage Model for IM7/5260 Laminates Subjected to Tension-Tension Fatigue’, Journal 

of Composite Materials (1995), 29:280-305 

 

VDI 2014/3. Development of Fibre-Reinforced Plastics components: Analysis. Technical 

report, Verein Deutscher Ingenieure e.V., Dusseldorf, 2006. 

 

W Hwang and K S Han, ‘Fatigue of Composites - Fatigue Modulus Concept and Life 

Prediction’, Journal of Composite Materials (1986), 20:154-165 

 

W Van Paepegem and J Degrieck, ‘A new coupled approach of residual stiffness and 

strength for fatigue of fibre-reinforced composites’, International Journal of Fatigue 

(2002), 24:747–762. 

 

Xiao J and Bathias C, ‘Fatigue behavior of un-notched and notched woven glass/epoxy 

laminates’, Composites Science and Technology (1994), 50:141-148 

 

Yuang Liang, Hai Wang, Costas Soutis, Tristan Lowe and Robert Cernik, ‘Progressive 

Damage in Satin Weave Carbon/Epoxy Composites under Quasi-Static Punch Shear 

Loading’, Polymer Testing (2015), 41:82-91 

 

 



 

69 

APPENDIX A 

FORTRAN CODE

This code is available at CDMhub.com under Puck failure criteria along with a user 
manual. 
C     Written by Karan Kodagali @ University of South Carolina at Columbia      
C     Based largely on the theories of Alfred Puck 
C     Please send any bugs or errors to kodagali@email.sc.edu 
      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 
     3 NDI,NSHR,NTENS,NSTATEV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      INTEGER 
     1 I,J 
C 
      CHARACTER*80 CMNAME 
      CHARACTER*80 CPNAME 
      DIMENSION STRESS(NTENS),STATEV(NSTATEV), 
     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 
     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 
      DOUBLE PRECISION     
     1 E1,E2,E3,G12,G13,G23,V12,V13,V23,V21,V31,V32,S(NTENS), 
     2 XT,XC,YT,YC,VF12,EF1,C0,S0,TMAT(6,6),STRA(NTENS), 
     3 C(NTENS,NTENS),S21,FFT,FFC,MFT,MFC,NMP,NW1,G23O, 
     4 MFLC,DFT,DFC,DMT,DMC,DMLC,STRANT(NTENS),CD(NTENS,NTENS), 
     5 T21C,RVVA,ZERO,ONE,CF(NTENS,NTENS),MAXIM,E2O,G12O, 
     6 CFULL(NTENS,NTENS),MFMV,DMG,COUNTER,XX,VAR,E1O,XTF, 
     7 RVVA1,YT1,S211,PTR,SIGN,TAUNT,TAUNL  
      INTEGER DEG,MAT 
      PARAMETER (ZERO=0.D0, ONE=1.D0) 
      real(16), parameter :: PI_16 = 4 * atan (1.0_16) 
C 
C     INITIALIZING VARIABLES--------------------------------------------- 
C 
      E1 = PROPS(1)           !YOUNG'S MODULUS IN DIRECTION 1 (L) 
      E2 = PROPS(2)           !YOUNG'S MODULUS IN DIRECTION 2 (T)  
      E3=E2                
      G12 = PROPS(3)          !SHEAR MODULUS IN 12 PLANE 
      G13=G12                 !SHEAR MODULUS IN 13 PLANE 
      V12=PROPS(4)            !POISSON RATIO IN 12 
      V23=PROPS(5)            !POISSON RATIO IN 23 
      V13=V12                 !POISSON RATIO IN 13  
      EF1=PROPS(6)            !MODULUS OF FIBER PARALLEL TO FIBER 
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 VF12 = PROPS(7)         !VOLUME FRACTION OF FIBER 
      XT = PROPS(8)           !TENSILE STRENGTH PARALLEL TO FIBER 
      XC = PROPS(9)           !COMPRESSIVE STRENGTH PARALLEL TO FIBER 
      YT = PROPS(10)          !TENSILE STRENGTH PERPENDICULAR TO FIBER 
      YC = PROPS(11)          !COMPRESSIVE STRENGTH PERPENDICULAR TO FIBER 
      S21 = PROPS(12)         !IN PLANE SHEAR STRENGTH 
      MAT = PROPS(13)         !MATERIAL TYPE FOR INCLINATION PARAMETERS 
      DEG = PROPS(14)         !EWM/CSE 
      G23 = E2/2/(1.+V23)     !SHEAR MODULUS IN 23 PLANE 
      XTF=XT*EF1/E1           !EFFECTIVE TENSILE STRENGTH OF FIBER 
C      ROT = PROPS(15) 
C      C0=COS(ROT*PI_16/180) 
C      S0=SIN(ROT*PI_16/180) 
C     Damage variables from previous time step 
      DFT=STATEV(6)        
      DFC=STATEV(7) 
      DMT=STATEV(8) 
      DMC=STATEV(9) 
C     Saving original stiffness values before degradation 
      E2O=E2 
      G12O=G12 
      G23O=G23 
      E1O=E1 
C      
      DMG=ONE 
      V21=(E2/E1)*V12 
      V31=(E3/E1)*V13 
      V32=(E3/E2)*V23 
C 
C     STRAIN--------------------------------------------- 
C      
      DO I = 1, NTENS 
         STRANT(I) = STRAN(I) + DSTRAN(I) 
      END DO 
C 
C     DEGRADATION DUE TO PREVIOUS DAMAGE------------------------------------------
--- 
C 
      IF(DEG.EQ.1) THEN 
          IF(MAT.EQ.1) DEGK=0.7 
          IF(MAT.EQ.2) DEGK=0.41 
          E1=(1-DFC)*(1-DFT)*E1O 
          G12=(1-DFT)*(1-(DMC*DEGK))*(1-(DMT*DEGK))*G12O 
          E2=(1-DFT)*(1-DMT)*E2O 
          E3=E2 
          G13=G12 
          G23=(1-DFT)*(1-(DMC*DEGK))*(1-(DMT*DEGK))*G23O 
          V21=(E2/E1)*V12 
          V31=(E3/E1)*V13 
          V32=(E3/E2)*V23 
      END IF 
C 
C     CONSTITUTIVE RESPONSE AND STRESS--------------------------------------------
- 
C 
      CALL CONSTITUTIVE(CF,E1,E2,E3,G12,G13,G23,V12,V13,V23,V21, 
     1 V31,V32,NTENS,NDI,NSHR,DFT,DFC,DMT,DMC,DEG) 
      DO K1=1,NTENS 
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          S(K1)=0.0D0 
          DO K2=1,NTENS 
              S(K1)=S(K1)+CF(K2,K1)*STRANT(K2) 
          ENDDO 
      ENDDO 
      STRESS=S 
      DDSDDE=CF   !Updating jacobian and stress is carried out with degradation at 
the previous load step to ensure easier convergence 
C                 !Thus a small time step is required for accurate results. 
C     DAMAGE EVALUATION AND DEGRADATION-------------------------------------------
-- 
C     
      DO WHILE ( DMG.EQ.ONE )   
          CALL CONSTITUTIVE(CF,E1,E2,E3,G12,G13,G23,V12,V13,V23,V21, 
     1    V31,V32,NTENS,NDI,NSHR,DFT,DFC,DMT,DMC,DEG) 
          DO K1=1,NTENS 
              S(K1)=0.0D0 
              DO K2=1,NTENS 
                  S(K1)=S(K1)+CF(K2,K1)*STRANT(K2) 
              ENDDO 
          ENDDO 
          CALL THETAFP(S,S21,XTF,XC,YT,YC,THETA,NTENS,NMP,MAXIM,NDI, 
     1     NSHR,MAT) 
          CALL CFAILURE(S,V12,VF12,E1,EF1,S21,XTF,XC,YT,YC,NDI,NSHR, 
     1 MFT,FFT,FFC,MFC,DMG,NTENS,THETA,NMP,NW1,MAXIM,SIGN,MAT,TAUNT, 
     2 TAUNL,PTR,RVVA1,YT1,S211) 
          IF(DFT.GT.0.99) FFT=1 
          IF(DFC.GT.0.99) FFC=1 
          IF(DMT.GE.0.99) MFT=1 
          IF(DMC.GE.0.99) MFC=1           
          IF(FFT.LE.ONE.AND.FFC.LE.ONE.AND.MFT.LE.ONE.AND.MFC.LE. 
     1    ONE) THEN  
             DMG=ZERO 
          END IF 
C     Degradation due to damage in step for CSE 
          IF(DEG.EQ.1) THEN 
              IF(FFT.GT.ONE) THEN 
                  DFT=0.9999 
              END IF 
              IF(FFC.GT.ONE) THEN 
                  DFC=0.9999 
              END IF 
              IF(MFT.GT.ONE) THEN 
                  DMT=DMT+ONE/100 
                  IF(DMT.GE.ONE) THEN 
                        DMT=0.99 
                  END IF 
              END IF 
              IF(MFC.GT.ONE) THEN 
                  DMC=DMC+ONE/100 
                  IF(DMC.GE.ONE) THEN 
                        DMC=0.99 
                  END IF 
              END IF 
              E1=(1-DFC)*(1-DFT)*E1O 
              G12=(1-DFT)*(1-(DMC*0.7))*(1-(DMT*0.7))*G12O 
              E2=(1-DFT)*(1-DMT)*E2O 
              E3=E2 
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              G13=G12 
              G23=(1-DFT)*(1-(DMC*0.7))*(1-(DMT*0.7))*G23O 
              V21=(E2/E1)*V12 
              V31=(E3/E1)*V13 
              V32=(E3/E2)*V23 
C         Degradation due to damage in step for ewm               
          ELSE IF(DEG.EQ.2) THEN 
              IF(FFT.GT.ONE) THEN 
                  DFT=0.9999 
              END IF 
                IF(FFC.GT.ONE) THEN 
                  DFC=0.9999 
              END IF 
              IF(MFT.GT.ONE.AND.DMT.EQ.ZERO) THEN 
                  DMT=0.99 
              END IF 
              IF(MFC.GT.ONE.AND.DMC.EQ.ZERO) THEN 
                  DMC=0.99     
              END IF 
          END IF 
      END DO 
      THETA=THETA*180/(4 * atan (1.0_16)) 
C 
C     SAVE STATE VARIABLES---------------------------------------------    
C 
      STATEV(1) = FFT 
      STATEV(2) = FFC 
      STATEV(3) = MFT 
      STATEV(4) = MFC 
      STATEV(5) = THETA 
      STATEV(6) = DFT 
      STATEV(7) = DFC 
      STATEV(8) = DMT 
      STATEV(9) = DMC 
      STATEV(10) = MAX(DFT,DFC,DMT,DMC)       
      RETURN 
      END 
C****************************************************************************** 
C CALCULATE THE CONSTITUTIVE RESPONSE****************************************** 
C****************************************************************************** 
      SUBROUTINE CONSTITUTIVE(CF,E1,E2,E3,G12,G13,G23,V12,V13,V23,V21, 
     1 V31,V32,NTENS,NDI,NSHR,DFT,DFC,DMT,DMC,DEG) 
      INCLUDE 'ABA_PARAM.INC' 
      DOUBLE PRECISION 
     1 E1,E2,G12,G23,V12,V13,V23,DMG,G13,V21,V31,V32,E3,DF,DM,DMT,DMC, 
     2 CF(NTENS,NTENS),S(NTENS),STRANT(6),ATEMP,DELTA,SMT,SMC,DFT,DFC 
      INTEGER NDI,NTENS,DEG,NSHR 
      PARAMETER (ZERO=0.D0, ONE=1.D0) 
      DO K1=1,NTENS 
          DO K2=1,NTENS 
              CF(K1,K2)=0.D0 
          ENDDO 
      ENDDO 
C      CONSTITUTIVE RESPONSE CALCULATED FOR 3D AND 2D CASES WITH CSE AND EWM 
DEGRADATION 
      IF(NDI.EQ.3) THEN 
          IF(DEG.EQ.1) THEN 
              DELTA=1/(1-V12*V21-V23*V32-V13*V31-2*V21*V32*V13) 
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              CF(1,1) = E1*(1-V23*V32)*DELTA 
         CF(1,2) = E2*(V12+V32*V13)*DELTA 
         CF(1,3) = E1*(V31+V21*V32)*DELTA 
         CF(2,1) = CF(1,2)    
         CF(2,2) = E2*(1-V13*V31)*DELTA      
         CF(2,3) = E2*(V32+V12*V31)*DELTA       
              CF(3,1) = CF(1,3)     
         CF(3,2) = CF(2,3)     
         CF(3,3) = E3*(1-V12*V21)*DELTA       
         CF(4,4) = G12    
         CF(5,5) = G13    
         CF(6,6) = G23   
          ELSE 
              SMT=0.9 
              SMC=0.5 
              DF=1-(1-DFT)*(1-DFC) 
              DM=1-(1-DMT)*(1-DMMC) 
              DELTA=1/(1-V12*V21-V23*V32-V13*V31-2*V21*V32*V13) 
              CF(1,1) = (1-DF)*E1*(1-V23*V32)*DELTA 
         CF(1,2) = (1-DF)*(1-DM)*E1*(V21+V31*V23)*DELTA 
         CF(1,3) = (1-DF)*(1-DM)*E1*(V31+V21*V32)*DELTA 
         CF(2,1) = CF(1,2)    
         CF(2,2) = (1-DF)*(1-DM)*E2*(1-V13*V31)*DELTA      
         CF(2,3) = (1-DF)*(1-DM)*E2*(V32+V12*V31)*DELTA       
              CF(3,1) = CF(1,3)     
         CF(3,2) = CF(2,3)     
         CF(3,3) = (1-DF)*(1-DM)*E3*(1-V12*V21)*DELTA       
         CF(4,4) = (1-DF)*(1-SMT*DMT)*(1-SMC*DMC)*G12    
         CF(5,5) = (1-DF)*(1-SMT*DMT)*(1-SMC*DMC)*G13    
         CF(6,6) = (1-DF)*(1-SMT*DMT)*(1-SMC*DMC)*G23  
          END IF 
      ELSE IF(NDI.EQ.2) THEN 
          IF(DEG.EQ.1) THEN 
              DELTA = 1-V12*V21 
              CF(1,1) = E1/DELTA 
              CF(2,2) = E2/DELTA 
              CF(1,2) = V12*E2/DELTA 
              CF(2,1) = CF(1,2) 
              CF(3,3) = G12 
              IF(NSHR.GT.1) THEN 
                  CF(4,4) = G13 
                  CF(5,5) = G23 
              END IF 
          ELSE 
              DELTA = 1-V12*V21 
              CF(1,1) = (1-DF)*E1/DELTA 
              CF(2,2) = (1-DF)*(1-DM)*E2/DELTA 
              CF(1,2) = (1-DF)*(1-DM)*V12*E2/DELTA 
              CF(2,1) = (1-DF)*(1-DM)*CF(1,2) 
              CF(3,3) = (1-DF)*(1-SMT*DMT)*(1-SMC*DMC)*G12 
              IF(NSHR.GT.1) THEN 
                  CF(4,4) = (1-DF)*(1-SMT*DMT)*(1-SMC*DMC)*G13 
                  CF(5,5) = (1-DF)*(1-SMT*DMT)*(1-SMC*DMC)*G23 
              END IF 
          END IF 
      END IF 
      RETURN 
      END 
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C****************************************************************************** 
C ANGLE OF FRACTURE PLANE****************************************************** 
C****************************************************************************** 
      SUBROUTINE THETAFP(S,S21,XT,XC,YT,YC,THETA,NTENS,NMP,MAXIM,NDI, 
     1 NSHR,MAT) 
      INCLUDE 'ABA_PARAM.INC' 
      INTEGER NTENS,NDI,NSHR,MAT 
      DOUBLE PRECISION 
     1 P21T,P21C,P22C,S21,XT,XC,YT,YC,SIG13,SIG23, 
     2 S(NTENS),FE,MAXIM,MAXT,SIG11,SIG22,SIG33,SIG12, 
     3 RVVA,THETA,P22T,TAUNT,SIGN,TAUNL,PTR,PCR,COS2PSI, 
     4 SIN2PSI 
      real(16), parameter :: PI = 4 * atan (1.0_16) 
      PARAMETER (ZERO=0.D0, ONE=1.D0) 
      IF(MAT.EQ.1) THEN 
          P21T = 0.3 
     P21C = 0.25 
       P22C = 0.2 
          P22T=P22C 
      ELSE 
          P21T = 0.35 
     P21C = 0.3 
       P22C = 0.3 
          P22T=P22C 
      END IF 
      IF(NDI.EQ.3) THEN 
          SIG11=S(1) 
          SIG22=S(2) 
          SIG33=S(3) 
          SIG12=S(4)/2 
          SIG13=S(5)/2 
          SIG23=S(6)/2 
      ELSE 
          SIG11=S(1) 
          SIG22=S(2) 
          SIG12=S(3) 
          IF(NSHR.GT.1) THEN 
              SIG33=0 
              SIG13=S(4)/2 
              SIG23=S(5)/2 
          ELSE 
              SIG33=0 
              SIG13=0 
              SIG23=0 
          END IF 
      END IF 
      RVVA = (S21/(2*P21C))*(sqrt((1+2*P21C*YC/S21))-1) 
      DO I = -90,90 
          THETA = I*PI/180 
          SIGN=SIG22*(COS(THETA))**2+SIG33*(SIN(THETA))**2+2*SIG23* 
     1    SIN(THETA)*COS(THETA) 
          TAUNT=-SIG22*SIN(THETA)*COS(THETA)+SIG33*SIN(THETA)*COS(THETA) 
     1    +SIG23*((COS(THETA))**2-(SIN(THETA))**2) 
          TAUNL=SIG13*SIN(THETA)+SIG12*COS(THETA) 
          COS2PSI=TAUNT**2/(TAUNT**2+TAUNL**2) 
          SIN2PSI=TAUNL**2/(TAUNT**2+TAUNL**2) 
          PTR=(P22T/RVVA)*COS2PSI+(P21T/S21)*SIN2PSI 
          PCR=(P22C/RVVA)*COS2PSI+(P21C/S21)*SIN2PSI 
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          IF(SIGN.GE.ZERO) THEN 
              FE =SQRT((((1/YT)-PTR)*SIGN)**2+(TAUNT/RVVA)**2+ 
     1        (TAUNL/S21)**2)+PTR*SIGN 
          ELSE 
              FE = SQRT((TAUNT/RVVA)**2+(TAUNL/S21)**2+(PCR*SIGN)**2)+ 
     1        PCR*SIGN 
          END IF 
          IF(FE.GT.MAXIM) THEN 
              MAXIM=FE 
              MAXT=THETA 
          END IF 
      END DO 
      THETA=MAXT          ! Angle of Fracture Plane 
      RETURN 
      END 
C****************************************************************************** 
C PUCK FAILURE CRITERIA******************************************************** 
C****************************************************************************** 
      SUBROUTINE CFAILURE(S,V12,VF12,E1,EF1,S211,XT,XC,YT1,YC1,NDI,NSHR, 
     1 MFT,FFT,FFC,MFC,DMG,NTENS,THETA,NMP,NW1,MAXIM,SIGN,MAT,TAUNT, 
     2 TAUNL,PTR,RVVA,YT,S21) 
      INCLUDE 'ABA_PARAM.INC' 
      INTEGER NTENS,KINC,NOEL 
      DOUBLE PRECISION 
     1 P21T,P21C,P22C,MSIG,VF12,EF1,S21,XT,XC,YT,YC,MAXIM,E1, 
     2 S(NTENS),STRANT(NTENS),MFT,FFT,FFC,MFC,DMG,V12,SIG23, 
     3 T21C,RVVA,THETA,P22T,TAUNT,SIGN,TAUNL,PTR,PCR,COS2PSI,SIG13, 
     4 SIN2PSI,NMP,M,SC,A,C,NW1,YT1,YC1,S211,SIG11,SIG22,SIG33,SIG12 
      PARAMETER (ZERO=0.D0, ONE=1.D0) 
      IF(NDI.EQ.3) THEN 
          SIG11=S(1) 
          SIG22=S(2) 
          SIG33=S(3) 
          SIG12=S(4)/2 
          SIG13=S(5)/2 
          SIG23=S(6)/2 
      ELSE 
          SIG11=S(1) 
          SIG22=S(2) 
          SIG12=S(3) 
          IF(NSHR.GT.1) THEN 
              SIG33=0 
              SIG13=S(4)/2 
              SIG23=S(5)/2 
          ELSE 
              SIG33=0 
              SIG13=0 
              SIG23=0 
          END IF 
      END IF 
 IF(MAT.EQ.1) THEN 
          P21T = 0.3 
     P21C = 0.25 
       P22C = 0.2 
          P22T = P22C 
          MSIG = 1.3 
      ELSE 
          P21T = 0.35 



 

76 

     P21C = 0.3 
       P22C = 0.25 
          P22T = P22C 
          MSIG = 1.1 
      END IF 
c RVVA = YC/(2*(1+P22C))     
C 
C     FAILURE CRITERIA    
C 
!     FIBER TENSILE 
      IF((SIG11-(V12-VF12*MSIG*E1/EF1)*(SIG22+SIG33)).GE.ZERO) THEN 
          FFT = (SIG11-(V12-VF12*MSIG*E1/EF1)*(SIG22+SIG33))/XT 
          FFC = ZERO 
          IF(FFT.GE.ONE) THEN 
      DMG=ONE 
          END IF 
      ELSE 
!     FIBER COMPRESSIVE 
          FFC = ABS((SIG11-(V12-VF12*MSIG*E1/EF1)*(SIG22+SIG33)))/XC 
          FFT = ZERO 
          IF(FFC.GE.ONE) THEN 
       DMG=ONE 
          END IF 
      END IF 
      YT=YT1 
      YC=YC1 
      S21=S211 
      RVVA = (S21/(2*P21C))*(sqrt((1+2*P21C*YC/S21))-1)    
      SIGN=SIG22*(COS(THETA))**2+SIG33*(SIN(THETA))**2+2*SIG23*SIN(THETA 
     1 )*COS(THETA) 
      TAUNT=-SIG22*SIN(THETA)*COS(THETA)+SIG33*SIN(THETA)*COS(THETA)+ 
     1 SIG23*((COS(THETA))**2-(SIN(THETA))**2) 
      TAUNL=SIG13*SIN(THETA)+SIG12*COS(THETA) 
      COS2PSI=TAUNT**2/(TAUNT**2+TAUNL**2) 
      SIN2PSI=TAUNL**2/(TAUNT**2+TAUNL**2) 
      PTR=(P22T/RVVA)*COS2PSI+(P21T/S21)*SIN2PSI 
      PCR=(P22C/RVVA)*COS2PSI+(P21C/S21)*SIN2PSI 
!     MATRIX TENSILE 
 IF(SIGN.GE.ZERO) THEN 
          MFT =SQRT((((1/YT)-PTR)*SIGN)**2+(TAUNT/RVVA)**2+(TAUNL/S21) 
     1    **2)+PTR*SIGN 
          MFC=ZERO 
      END IF 
!     MATRIX  COMPRESSION 
 IF(SIGN.LT.ZERO) THEN     
     MFC = SQRT((TAUNT/RVVA)**2+(TAUNL/S21)**2+(PCR*SIGN)**2)+PCR*SIGN 
          MFT=ZERO 
      END IF 
      IF(MFC.GE.ONE.OR.MFT.GE.ONE.OR.FFT.GE.ONE.OR.FFC.GE.ONE) THEN 
          DMG=ONE 
      ELSE 
          DMG=ZERO 
      END IF 
      RETURN 
      END 
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