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1 Introduction 

The amount of continuing publications on composite mechanics shows that research into this 
particular field of engineering is still very popular. This is due to mainly two aspects: firstly, the 
complexity of the mechanics of composite materials provides many interesting and challenging 
research areas and secondly the increase in range and frequency of applications of composite 
materials to solve engineering problems demands fresh answers. In this thesis an attempt is made 
to shed some light on a specific aspect of composite materials which is inherent to the synthesis of 
these types of materials, namely delaminations.  

A more detailed motivation for the research is given below after which the research goal and 
objectives are outlined. An overview of the entire thesis outline will conclude this chapter. 

1.1 Motivation for the research 

The increased use of composite materials in many fields of engineering, but particularly in the field 
of aeronautical engineering, has been the main driver for research into composites and their 
mechanics. In civil aviation this has recently lead to Boeing’s Dreamliner, which structural weight 
consists of more than 50% of composite materials and the Airbus A380 (see Figure 1.1), where large 
parts of the wings an upper fuselage (about 20% of structural weight) are manufactured from 
composite materials [4]. 

While the use of composite materials generally promises to be more efficient than current metal 

designs there are some pitfalls related to the damage mechanisms inherent to composite materials. 
A composite laminate is made up of several plies, in which the fibres are oriented at different ply 
angles with respect to a global coordinate frame to suit the strength and/or stiffness requirements 
of the product. Those plies are either pre-impregnated or dry, which means that, in the latter case, 
the second constituent of a composite material, the matrix, still needs to be added. While the fibres 
provide load carrying capabilities the matrix makes sure that the fibres are held in place. Owing to 
the nature of the material there are several failure modes related to the different constituents of a 
composite material [5]: 

 matrix cracking, which occurs at intraply level and often is initiated at defects or fibre matrix 
interfaces 

 fibre failure, which occurs when the strength in the fibres is surpassed 

Figure 1.1 - Airbus' A380 (left) and Boeing's Dreamliner (right) (Courtesy of Airbus and Boeing) 
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 delamination, which indicates the separation of individual plies or lamina due to matrix 
failure at the interply level 

The focus of the current thesis lies on the last item, delamination. It is the most severe form of 
internal damage in laminates when flexural applications are concerned, since it effectively 
separates the entire structure into two or more substructures resulting in decreased flexural 
stiffness. The title of the thesis also gives away the second important aspect, which is composites 
under impact. While impact generally can mean anything from a screw dropped from a few meters 
height to the ballistic impact of projectiles, the focus here lies on the former. During manufacturing 
and assembly it happens all too often that tools are dropped onto parts of the structure which can 
result in performance-decreasing damage that is invisible to the naked eye and is not considered 
important as the dropped tool is picked up. This is another important problem with composites. 
While the impact might not have left a visible mark on the impact surface, the structure 
underneath could have potentially undergone severe internal damage in the form of matrix cracks 
and delaminations. Due to this rather complex, and not entirely understood damage behaviour, 
composite materials are often penalized during design stages resulting in marginally better than or 
equal performances to their isotropic counterpart. It is therefore considered essential to develop a 
thorough understanding of the formation and interaction of such internal damage states using an 
analytical approach to the problem to enhance the use of composite materials during design and 
also during the service life of a part in connection with maintenance, etc. 

To date (2012) composite parts susceptible to impact damage are evaluated using either 
experimental tests or finite element analyses. While these two approaches will certainly yield highly 
accurate results in terms of the damage state they are very expensive to carry out. Both need a lot 
of time to set up and many other resources such as testing personnel, materials and equipment and 
considerable computing power. Obviously, an analytical approach will not be able to replace the 
above mentioned practices. Rather it should be used to help engineers make preliminary decisions 
based on which best candidate designs are selected for further, more accurate, evaluation using 
either experiments or finite element analyses can be carried out. 

Ultimately, the results of this research should lead to more impact damage resistant/tolerant 
composite design guidelines, which combined with existent knowledge and guidelines [4] can be 
used in the preliminary design stages of composite parts. 

Finally, it should be mentioned at this point that this thesis originated from a cooperation with PhD 
candidate Mohamad Talagani MSc and his thesis entitled “Damage tolerance of advanced 
composite structures”. 

1.2 Research tasks and objective 

The thesis is built around the research objective formulated as follows: 

To develop a (semi-)analytic model for multiple delaminations in an impacted composite plate by 
obtaining an accurate representation of the stress field near the impact zone, using failure criteria 
in combination with fracture mechanics concepts to determine conditions for delamination 
initiation and growth, and to investigate the interactions between delamination zones. 

Several research tasks can be extracted from this objective, which form milestones in the execution 
of the project: 

 obtain force and indentation history for quasi-static variants of impact events 
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 obtain accurate stress values from the contact due to impact 

 determine first delamination site and establish growth criteria 

 determine updated stress field under presence of cracks 

 determine subsequent delamination sites and investigate their interaction with each other 

Each of these tasks will be explained in more detail in the respective subsections of the main 
chapter of this report dealing with the analytical model. While each and every one of these tasks is 
important the synthesis of these separate aspects into one model lies at the core of this thesis. The 
synthesis is based on a modular and sequential approach, with the result from one analysis flowing 
directly into the next the step. This will be discussed in detail in chapter 3. 

1.3 Outline of the report 

The remainder of the report follows a natural sequence. A brief summary of the research done in 
the various fields of interest in this research is given in chapter 2. The main part of the work is 
described in chapter 3, which consists of a description of the analytical model. The modularity of 
the approach is explained and each of the research tasks are treated in detail to obtain the 
analytical model. The application of this model to a few test cases and its potential use in an 
optimization scheme with respect to damage resistance/tolerance is discussed in chapter 4. Finally, 
conclusions are drawn and recommendations are given in chapter 6. 
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2 Literature Review 

The literature related to the topics involved in this thesis is presented in this chapter. This thesis 
deals with the impact behaviour of composite structures. The impact considered is assumed to be 
quasi-static and therefore is able to represent a tool dropped, an impact event during 
manufacturing or maintenance processes, for example. Impact events such as tool drops can lead 
to internal damage creation within in the laminate in the form of multiple delaminations which 
might not be detectable with the naked eye. Such delaminations can be detrimental to the 
structure in case of compressive or bending applications, since they reduce the bending stiffness of 
the impacted structure. 

This chapter is split into four sections; one, the literature on existing solutions to the impact 
problem is discussed, two, the literature on obtaining accurate stress states for undamaged and 
damaged stacks is covered, three, the literature concerning the damage and fracture mechanics of 
composites is covered and in section four the literature on existing approaches to predicting 
damage in impacted composite structures is discussed. Each of the first three sub-objectives has 
been covered extensively in the literature and a good overview up until the turn of the millennium 
is provided in Abrate [6], which contains lot of detail on the specific problems pertaining to 
obtaining the force history during an impact event. The remaining two sub-problems are treated 
less thoroughly. Abrate relies entirely on plate theories to predict the transverse stresses in 
impacted composite plates and discusses damage prediction only qualitatively. 

2.1 Impact problem 

A variety of solutions procedures exist to solve the problem of a force acting perpendicular to the 
surface of the structure, which is how the tool drop can be simulated. 

In the context of the first order shear deformation plate theory (FSDT) Dobyns [7] investigated the 
behaviour of simply supported orthotropic plates under static and dynamic loads. Due to the nature 
of the problem the flexural displacements are only given in terms of infinite series and the solution 
of the impact problem was obtained by solving a non-linear integral equation. The Hertzian contact 
law (see chapter 3 for more detail) was used when modelling the impact problem. The impact load 
could take the shape of a concentrated force, be spread over a small area, etc. In case of a load 
spread over a small area it could be shown that the peak transverse shear forces acting on the plate 
occurred at the boundary of the load patch. While the solution to the problem was successfully 
obtained it lacks the simplicity of being implementable in straightforward manner. 

In order to account for the well-known Hertzian contact formulation during impact, several spring-
mass models have been set up and investigated as to reproduce the impact event as accurately as 
possible. A two degree of freedom (TDOF) spring mass model was proposed by Shivakumar, Elber 
[8] for the analysis of the impact force and duration during low velocity impact. Impactor and an 
equivalent plate mass act as the two degrees of freedom whereas springs represent the 
deformation between impactor and plate and the plate itself, respectively. Bending, transverse 
shear and membrane deformation of the plate can be modelled by solving the two resulting non-
linear differential equations numerically. For large impactor masses relative to the equivalent plate 
mass, the model simplifies to a single degree of freedom model (SDOF), which still needs to be 
solved numerically due to the presence of the non-linear contact formulation. Besides this 
improved spring-mass model they also suggested a rather simple energy-balance system, which 
provides a quick yet accurate means of predicting the peak force during impact. If all contributions 
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are to be taken into account, then the resulting equation can be solved by a Newton-Raphson 
approach. 

A simplified version of the analysis done by Shivakumar has been carried out by Pang and his 
colleagues [9]. They took an adapted spring-mass model representing thin plate small deflection 
theory. By assuming a harmonic expression for the force acting on the plate they ended up with a 
single non-linear equation which still needed to be solved numerically. Nevertheless, it greatly 
enhanced the complex analysis from Shivakumar, Elber [8]. 

From a one-parameter differential equation Olsson [10] managed to derive the impact response of 
a specially orthotropic plate for the first impact phase. This includes the part of the impact event 
where the highest contact forces occur before the interaction of flexural waves reflected from the 
boundaries. Again, Hertzian contact formulation is used and the result of the dimensionless 
differential equation can be used to express contact force, deflection and pressure. The only 
parameter influencing the ordinary differential equation is the so-called inelasticity parameter 
lambda, which depends on the impact and plate configuration. In his paper he explains the 
fundamental difference between boundary- and wave-controlled impact response. In the case of 
the boundary-controlled impact the entire plate is deformed during impact and depending on the 
ratio of contact duration to lowest vibration mode the response can be considered quasi-static. 
During wave-controlled impact the deformations are localized around the impact event. 

Following his paper published in 1992, Olsson [2] sets out to define a mass criterion for the wave-
controlled impact response of composite plates. Rather than using the impactor velocity to define 
the type of impact response as done by Shivakumar, Elber [8] he states that the impactor-plate 
mass ratio is a better suited classification criterion. This relates to the fact that different masses 
impacting with the same velocity inflict completely different damage states. The appropriate 
analytical model needs to be chosen for each of the three different cases, small-, intermediate- and 
large-mass. In the case of a small-mass Olsson succeeded in finding the limiting impactor-plate 
mass ratio. He also discusses the limits of large-mass impacts and compares these to those found 
by Swanson in his paper [11]. Swanson uses the fact that, for quasi-static cases, the knowledge of 
the displacement field is sufficient to determine the lumped mass of the impacted structure and 
that for a ratio of projectile mass to lumped mass of larger than 10, the response is considered to 
be quasi-static. 

2.2 Stress determination 

Accurate knowledge of the complete stress state at any given moment throughout the impact 
event is paramount for the successful prediction of delamination sites. Naturally, significant 
attention has been paid to this particular topic and a variety of approaches have been put forward, 
of which a selection will be presented in the following. 

The difficulty regarding delaminations and any preceding failure modes during the impact event 
such as matrix and shear cracking lies in the fact that they are all triggered by interlaminar shear 
and normal stresses. Most solutions regarding the mechanics of composites are deduced from the 
plane stress or strain reduced equilibrium equation. The much needed transverse stress 
components are then recovered from integrating the full set of three dimensional equilibrium 
equations [12]. The transverse shear stress components then follow a parabolic, or in the case of 
composites, a piecewise parabolic distribution with the maximum located at midplane. During the 
impact event, however, large contact stresses occur locally, which need to be accounted for. 
Building upon Boussinesq’s solution to the problem of a concentrated force acting on a semi-
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infinite body, Love [13] investigated semi-infinite bodies under pressure acting on parts of the 
boundary. He used the Hertzian contact formulation to express the entire stress state in closed 
form for an isotropic semi-infinite body resulting from contact with a hemispherical impactor. The 
equivalent version to the problem solved by Boussinesq for transversely isotropic material is 
provided by Lekhnitskii in his work on anisotropic elasticity theory [14]. This provides the basis for 
Dahan and Zarka [15] who using the Hertzian contact formulation successfully delivered the 
transversely isotropic counterpart for Love´s solution. 

Using the available literature a simplified approach to the impact problem has been set up by 
Olsson and Nilsson [16]. They combine the solution of a simply-supported circular Kirchhoff plate 
with the contact stresses in a transversely isotropic semi-infinite body according to Dahan and 
Zarka both due to the Hertzian contact load. Naturally, the solution to the second part is only 
approximate; however, it was shown that the agreement between the predictions and conducted 
FE-analysis was good.  

Common to all of these approaches is the fact that a semi-infinite body has been considered, i.e. 
that interlaminar stresses were specified to be zero at infinity allowing for analytical solutions to 
the integrals involved. Contrary to this, Cairns discussed the problem of a finite thickness plate in 
his PhD thesis [17]. He solved the problem by expressing the stress function using a Fourier-Bessel 
series and satisfying the boundary conditions at both the impact and back surface. While achieving 
the desired results, the solution can only be obtained numerically and its accuracy depends on the 
number of terms used in the series expansion. A different approach based on Boussinesq’s 
equations has been investigated by Talagani [18]. Using these in combination with the Hankel 
integral transform leads to an integral expression for the stress components similar to those 
presented by Dahan and Zarka [15]. Due to the fact that the plate has a finite thickness these can 
only be solved numerically. The results are qualitatively similar to those obtained by Cairns and 
have been satisfyingly compared to finite elements (FE) results. Again, however, the accuracy of the 
results depends on the numerical solution method used. Both methods mentioned here constitute 
semi-analytical approaches valid for transversely isotropic material. 

While all of the approaches listed above have been approved for structures, which have not yet 
suffered any internal damage, it cannot be assumed that they are equally valid for bodies featuring 
delaminations or similar faults. Solutions for the case of a delaminated structure subject to a load 
acting perpendicular to its surface have not been found in the literature on elasticity theory or 
related topics, which therefore lead the literature search to be extended into the realms of fracture 
mechanics. 

2.3 Damage/Fracture mechanics 

On an interlaminar level damage normally first occurs in the form of transverse matrix cracks., 
which arise when the introduced transverse shear stress surpasses the shear strength of the matrix. 
Eventually these cracks reach a ply interface and at their tips high stress intensities are dominant. 
These stress intensities initiate delaminations. This means once the interlaminar stresses are 
determined to a satisfying degree of accuracy, a failure criterion can be applied to determine where 
exactly the first and any subsequent delaminations are initiated. Once that is known linear elastic 
fracture mechanics (LEFM) approaches can be used to predict growth of the delaminations.  

A comprehensive review of failure criteria has been published by Orifici, Herszberg [5]. They cover 
individual laminae constituent failure modes criteria and delamination initiation and growth 
criteria. The problem with many of the failure criteria is that they do not take into account the sign 
of the transverse normal stress with regard to the initiation of delamination. One of the first to 
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publish delamination initiation criteria was Hashin 
[19] after which a range of criteria followed. One 
such failure criterion, which was used successfully 
to predict the onset of delamination due to in-
plane loads, was derived by Brewer and Lagace 
[20]. They used average transverse stress values in 
combination with the respective transverse 
strengths of the material in a quadratic stress 
criterion. Comparing it to the energy release rate 
approach it was found that their stress criterion 

was able to predict the onset of delamination more accurately for a variety of laminate layups. 
However, the averaging length and material strength parameters would have to be determined 
first. Taking into account the sign of the transverse normal stress Hou, Petrinic [21] devised a 
criterion which allots a beneficial influence of compressive normal stresses to the formation of 
delaminations and would only allow one to form if the shear stresses are sufficiently large. 

Once a crack in from of a delamination has been found within the laminate the concepts of LEFM 
can be applied to study its evolution. Numerous articles and books have been published on this 
topic of which a selection will be presented here. A recent and comprehensive textbook is that of 
Sun and Jin [22]. There are basically two distinct approaches to fracture mechanics: the local 
approach involving the near crack tip stress fields and the global energy balance approach. The 
important factor in the first approach is the stress intensity factor (SIF) while for the second 
approach the energy release rate (ERR) plays a major role. Both can be used to study the growth of 
a delamination as they are related to each other and therefore often appear in the same 
publications. Equivalent to the energy release rate is the so-called J-integral set up by Rice [23]. This 
integral is path independent, which means that an arbitrary path enclosing the crack can be taken 
to yield the same result, offering great opportunities to the researcher. 

Expressions SIFs can be obtained for a wide range of applications from handbooks [24]. However, 
nearly all of them are for isotropic homogeneous cases and the particular case of a structure under 
a perpendicular concentrated load with an embedded crack does not seem to be covered. 
Fortunately, there have been some interesting contributions on stress intensity factors at interfaces 
between dissimilar media. The complicating factor when studying interfacial stress intensity factors 
lies in the fact that the different delamination modes (see Figure 2.1) all occur simultaneously. This 
leads to stress oscillations close to the crack tip [22]. Sun and Jih [25] who also struggled with these 
phenomena, have studied the energy release rate for interfacial cracks between two different 
material layers, both analytically and numerically. They managed to express the energy release rate 
for the individual modes in terms of the complex interface stress intensity factor. It was found that 
due to the inherent oscillation the individual terms did not correspond well with FE results. 
However, the sum of the individual modes, which is the total energy release rate for the crack, was 
very well defined. While Sun and Jih’s paper was restricted to isotropic bi-materials Hwu and Hu 
[26] extended their idea to general anisotropic material resulting in the same oscillatory behaviour 
in the definition of the individual energy release rates. Both papers depend on obtaining the 
solutions for the stress intensity factors from the asymptotic stress field around the crack. Suo and 
Hutchinson [1] have defined these interface stress intensity factors for a semi-infinite crack 
between two infinite isotropic layers under general edge loading. It is possible to define the 
complex stress intensity factor for the interface by expressing the loading at the crack tip in terms 
of the stress resultants. The only loading considered was bending and in-plane normal loads. 

Figure 2.1 - Basic modes of delamination growth. 
Opening mode (I), sliding mode (II), tearing mode (III) 
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Extending these ideas to allow for shear deformation has been done Wang and Qiao [27]. They use 
Reissner-Mindlin plate theory which allowed them to express the complex stress intensity at an 
interface between two orthotropic elastic layers in closed form. A further extension with respect to 
the number of contributing terms is provided by Andrews [28]. He introduces root rotations next to 
the shear deformations in the computation of the stress intensity factor due to an equivalent crack-
tip loading system, similar to the one used by Suo and Hutchinson [1]. Together with the 
expressions he presents guidelines for the validity of these expressions in terms of minimal 
distances ahead and behind the crack tip. It has to be noted, though, that his expressions have not 
been derived for interface cracks and that they rely on numerically computed root rotation 
compliances. 

Adopting the global energy balance approach Suemasu and Majima [29] have investigated the 
severity of multiple delaminations and their growth in a circular composite plate due to a 
transverse load. Assuming disc shaped delaminations they found closed form expressions for the 
critical force at which the delaminations would start to propagate. The energy release rate was 
found to be independent of the delamination size. They also discussed the event of a single 
delamination being either longer or shorter than the remainder of the delaminations and found 
that there is a tendency for the single delamination to adjust to the rest of the delamination pack. 
In their derivation they only considered equally spaced delaminations.  

Interesting research in the particular field of delamination onset and growth under impact loading 
has been carried out by Olsson. In one of his papers [30] he investigates the delamination growth of 
composite plates under quasi-static impact loading for multiple delaminations and is able to assign 
bending, shear and membrane contributions. In a similar fashion [31] he has studied small-mass 
impact behaviour of composite plates. He combines his results with the expression for static 
delamination threshold force in order to arrive at the delamination threshold velocity and 
compares them successfully with results from the literature. He then continues to find a 
relationship for the delamination threshold load for the dynamic impact [32] and demonstrates 
that the inclusion of dynamic terms leads to an increase of that load. He was also able to derive the 
delamination threshold velocity through an iterative process. He concludes that for material 
systems with low transverse shear stiffness this velocity is under-predicted. It has to be emphasized 
that in the above mentioned references, Olsson always assumes that the delamination will start at 
the mid-plane, several delaminations will always be spread evenly throughout the stack and the 
material in which the delaminations occur is homogenized. 

Since multiple delaminations will be considered in this work another aspect which has not been 
covered extensively in the literature had to be researched, the interaction of two or more 
delaminations within a laminate. Zheng and Sun [33] proposed a triple plate finite element model 
and investigate the interaction between two delaminations in a three point bending specimen as 
well as in a circular plate subjected to a central load. In the case of the circular plate they have 
shown that the interaction between the two delaminations depends strongly on the relative 
position of the delaminations to concurrent delaminations. A major effort has been made by 
Andrews who has investigated the elastic interaction between multiple delaminations [34]. He did 
this for plates undergoing cylindrical bending using, in total, three different contact formulations 
between the separated layers. Interaction effects such as shielding or amplification, already found 
by Zheng and Sun, were encountered, and for a system with two delaminations these can be 
visualized in graphical form. The validity of these findings has been demonstrated and it was founds 
that results are well behaved if the tips of the delaminations kept at a certain minimal distance 
apart. 
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In contrast to the stress-based investigation of damage detailed above, Liu [35] stated that 
delaminations occur because of bending stiffness mismatches at an interface of two differently 
orientated laminae. He bases his assumption on the fact that the impact problem can be viewed as 
mainly bending stress influenced. In his hypothesis he derives a bending stiffness mismatching 
coefficient which is proportional to the delamination area. Furthermore, Liu has studied the 
dependence of material properties, layup sequence and laminate thickness on the delamination 
area and, based on these findings, has demonstrated how to arrive at a damage resistant laminate. 

2.4 Damage prediction due to impact 

In trying to combine the separate aspects of finding the failure sites in laminates with predicting 
delamination interaction and growth several authors have set out to build damage prediction 
models for impacted composites. These are either based on complex FE analyses or extensive test 
programmes, both of which approaches are extremely time and resources consuming. 

Choi and Chang [36] use the FE approach to predict internal damage, that analytical models are not 
capable of predicting. They use matrix and shear cracks to initiate delaminations and distinguish 
between two distinct propagation cases based on the preceding failure mode. They propose a 
stress-based delamination growth criterion featuring a parameter that has to be obtained 
experimentally and is assumed to be only material system dependent. While giving reasonably 
successful correlation between test data and FE results their model was not able to incorporate 
interaction between multiple delaminations or any form of material degradation.  

In the context of an internationally conducted research project it was found that there is no 
strategy that is able to be used to predict the compressive residual strength due to the incident 
impact energy. It became necessary to find methods that can be used to predict the internal 
damage first. In their paper Davies and Zhang [37] present several coupon tests and predict both 
damage size and threshold load using gross simplifications of attributing isotropic behaviour to the 
composite structures investigated. They found that a degradation formulation for their numerical 
tool was necessary for accurate predictions. Such degradation models in combination with a 
cohesive zone model can be found in almost any publication on the numerical prediction of 
delaminations and other types of failure modes (Davies, Hitchings [38], Koloor, Abdul-Latif [39], 
Lopes [40]). Lopes’ work highlights both the complexity involved in setting up such an FE model and 
the time needed for just one impact simulation and even so the correlation of the results with 
experimental results can still be improved upon. 

An interesting concept observed by several authors and systematically researched by Schoeppner 
and Abrate [3] is that of the delamination threshold load (DTL). They use a broad set of impact test 
data, which contained three different material systems and a variety of layups of different laminate 
thicknesses. Based on this extensive experimental evidence they were able to relate the force at 
which significant internal damage will occur to the thickness of a laminate for each of the material 
systems considered. Therefore, this concept can be used to serve as first indicator of a laminate’s 
damage resistance to low-velocity impact. If the maximum contact load from a quasi-static 
approach is below this threshold load it can be assumed that no significant damage will occur. 
However, no statement has been made regarding the validity of this approach for other structures 
than those investigated and reported in [3], which conform to the ASTM standard for impact tests 
[41]. 
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The aim of the current work, reported here, was to complementing what has been done in this field 
with an emphasis on providing a fast and accurate solution in terms of damage prediction, which 
does not require the usage of complex and expensive numerical tools. 
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3 Analytical model 

The development of an analytical model to determine the damage state in an impacted composite 
structure was the main effort of this thesis and is the focus of this chapter. 

3.1 Methodology outline 

The emphasis at the outset of this project was to create an analytical model, which would be 
capable of predicting initiation and growth of multiple delaminations in impacted composite 
structures. While this comprises a range of engineering disciplines the aim was always to keep the 
model simple, and therefore fast, yet it should be able to capture the actual development of 
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Figure 3.1 - Schematic overview of the proposed model 



16 Analytical model 

damage under a quasi-static impact as accurately as possible. The reason why it should be fast 
relates to the fact that such a tool could be used in an optimizing routine preselecting a range of 
laminates which show good damage resistance/tolerance characteristics. In developing this model a 
modular approach was chosen, allowing to take individual blocks and replace them with alternative 
more complex ones, resulting in a more accurate, but possibly more expensive, solution. As 
previously mentioned the current model revolves around three main modules: the impact module, 
the stress state module and the damage and fracture module. In Figure 3.1 these modules have 
been placed in a flow diagram, presenting the approach in a visual form while acting as a roadmap 
for this chapter.  

Clearly these blocks represent the separate research tasks set up in section 1. As can be seen from 
Figure 3.1 the impact module discussed in section 3.3 only plays a minor role in the entire process 
since it will only have to be considered in the beginning. It will be used to determine whether or not 
the impact event on the given structure can be considered quasi-static using certain guidelines. 
Further, it is used to compute the deflection of the beam under impact and the maximum 
indentation due to the impactor. The stress determination in the undamaged laminate with 
subsequent application of a failure criterion is still rather straightforward and discussed in sections 
3.4-3.6. The main difficulty therefore lies in the second leg of the flow diagram, starting with the 
damage/fracture module encompassing the analysis of one or multiple delaminations including 
their interaction and growth characteristics and the inclusion of damage in the stiffness of the 
structure (sections 3.7 to 3.9). Finally, determining the stress in the damaged laminate is 
paramount for knowing at which interface the next delamination will initiate. The new internal 
stress state is based on the stress field emanating from the delamination tip, the updated bending 
stresses and the contact stresses, and will be discussed in section 3.9. The governing assumption for 
each of the building blocks will be discussed in the respective sections.  

3.2 Composite prerequisites 

When dealing with composite mechanics it is helpful to clarify certain concepts beforehand 
regarding the constitutive parameters, and for some of the analysis done here transversely 
isotropic material properties have been assumed, which will be discussed hereafter. There are 
many textbooks which cover the basic principles of composite structures from the constitutive 
relationships of a single ply to the governing relationships of the entire laminate (Reddy [12] and 
Kassapoglou [4]). 

Often it is useful to work with the engineering constants of a laminate. Those constants can be 
derived from the stiffness matrices of the laminate. For the case of a symmetric and balanced 
laminate the membrane stiffness in the principal direction of the laminate is given as: 

 ,1

11

1
mE

ha
  (3.2.1) 

where a11 is the (1,1)-entry of the laminate compliance matrix, which in case of a symmetric and 
balanced laminate is simply the inverse of the in-plane stiffness matrix A, obtained from classical 
laminated plate theory (CLPT). Similarly for the transverse in-plane laminate direction we have the 
following expression: 

 ,2

22

1
mE

ha
   

Below are those constants which are needed for the remainder of the project: 
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with ν being the Poisson’s ratio. As we will see later (section 3.5) it is often convenient to assume 
axially symmetric deflections when dealing with impact problems. This implicitly assumes that 
transverse shear stiffnesses and strengths are equal to each other, which is reasonable as the actual 
values do not differ too much from each other. This assumption can be applied to quasi-isotropic 
(QI) layups without too much care while for directional laminates it becomes more critical. Using 
axially symmetric deflections leads to the use of polar coordinates rather than cartesian. In this case 
engineering constants also exist, however, they are merely approximated [6]. Using equation (3.2.2) 
the following relationships can be written down: 
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R and θ are the in-plane coordinates. In order to be able to define the a transversely isotropic 
material we also need Ez, νrz and Grz. Suemasu, Kerth [42] derived the following equations in their 
paper: 
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The coefficients AS,ii are defined as: 

 

   

   

2
0,1 0,13 0,2 0,12 0,21

,11 ,22

0,2 0,12 0,13 0,2 0,13 0,12 0,21

,12 ,23

2 2
0,12 0,21 0,13 0,12 0,13

1 1
;  ;

1
;  

1 2

S S

S S

S S

S S

S

E E
A A

E E
A A

  

    

    

 
 

 

 
 

 

    

 (3.2.5) 

Here, all coefficients containing a 0 in their index are basic ply properties. These constants have 
been derived using a quasi-isotropic laminate made up of an infinite number of plies. Having 
defined these engineering constants we can now define the engineering compliance matrix for a 
transversely isotropic material according to Lekhnitskii [14]: 

 11, 22, 12, 13, 33, 44,

1 1 1
;  ;  ;  ;  r rz

hs hs hs hs hs hs

r r z z rz

a a a a a a
E E E E G
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         (3.2.6) 

These compliances are then used when defining constants during the derivation of the governing 
stress function for the transverse isotropic body. Those constants are given below and will be used 
in section 3.5: 
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It has to be emphasized at this point that assuming any composite as transversely isotropic is of course very 

simplifying as composites normally feature anisotropic or orthotropic in-plane behaviour. However, this 

assumption allows for a variety of approaches to be applied and certainly is considered more accurate than 

an isotropic representation of the composite. 

3.3 Quasi-static impact analysis 

As indicated in Figure 3.1 the whole process starts with the analysis of the impact event. The impact 
event is primarily governed by the velocity and the mass of the impactor and can be categorized 
into three basic cases as shown in Figure 3.2. The impact response considered here is the one 
depicted in Figure 3.2c). It is characterized by the in-phase behaviour of impactor and structure [2], 
i.e. of the deflection of the target and the load acting on the plate. It results from the fact that the 
impact time is much longer than it takes for elastic waves to travel to the plate boundaries. Its 
validity can be evaluated by looking at the ratio of impactor mass and effective structural mass 
explained hereafter. 

3.3.1 Assumptions 

The main assumption that has to be made here is that of a quasi-static response, which will simplify 
the computations significantly. A rule-of-thumb for the applicability of this assumption implies that 
the impact frequency is less than a third of the lowest natural frequency occurring [11], or: 

 
1

3
imp n   (3.3.1) 

where both ωimp and ωn can be approximated by: 

  and eq eq

imp n

imp eq eq

k k

M m m
  


 (3.3.2) 

where keq is the equivalent stiffness of the target, Mimp is the mass of the impactor and meq the 
equivalent lumped mass of the target. Using equations (3.3.2) and (3.3.1) we can arrive at limit in 
terms of the involved masses for a quasi-static approximation of the impact problem: 

Figure 3.2 - Classification of response types. (Figure taken from Olsson [2]) 
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This equivalent lumped mass can be obtained by using the implicit expression below: 

 2 21 1

2 2
eq c

Vol

m w dVol    (3.3.4) 

where δc is the central deflection of the structure, ρ the density of the target material and w the 
static displacement of the beam. This implies that once the static displacement field due to the 

concentrated force is known the equivalent mass can be 
determined, which will depend primarily on the boundary 
conditions. For a beam either clamped or simply supported at both 
sides the ratios of equivalent to total mass are 0.371 and 0.486, 
respectively. If the mass of the target increases while the impactor 
mass stays constant flexural waves will play a more pronounced role 
and the behaviour will be similar to the one depicted in Figure 3.2 b). 

Next to that we will further assume applied displacement as the 
input for our simulation. In reality the impact can neither be 
simulated by an applied force nor displacement approach as both 
cases happen simultaneously. Using a dynamic model one could 
potentially implement both approaches. The choice for the applied 
displacement approach stems from the fact that most experiments 
are carried out under stroke controlled conditions. Based on that a 
two degree of freedom (TDOF) equivalent spring system can be 
modelled as shown in Figure 3.3. In this system the spring stiffnesses 
kc, kb, ks and km correspond to the contact, bending, shear and 
membrane stiffness respectively. If only small deflections are 

considered then the membrane action of the impacted structure can be neglected, which simplifies 
the system. The Hertzian formulation is assumed for the contact. The contact force can then be 
computed according to: 
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con cP k   (3.3.5) 

where α is the indentation defined as the difference between the displacement of the impactor and 
the central deflection of the plate, 1 2x x   . The contact stiffness between an isotropic impactor 

and a composite plate is given by: 
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
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where Rimp is the radius of the spherical impactor. Here n1 and n2 are impactor and target specific 
parameters and are defined as: 
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The last equation has been published by Suemasu, Kerth [42] and is valid for transversely isotropic 
plates. The expression simplifies to the same form as given in (3.3.7) for an isotropic target. The 
constitutive parameters in the equation above have previously been defined in section 3.2.  

While the mass ratio of structure and impactor is an important indicator for the analysis approach it 
also has to be mentioned up to which energy levels the simulation is plausible. Lopes’ studies have 
shown that up to an incident energy of 20 J the form of damage is mainly due to delaminations and 
will therefore be used as an upper limit for the impact event subsequently. This does not mean that 
the model will not work beyond this energy level, however, the accuracy and validity of the 
obtained results are questionable. 

3.3.2 Force and indentation during impact 

Having determined the limit for the quasi-static response 
we can proceed to determine the load and indentation 
history based on the displacement of the beam under 
impact. It has been shown that for a quasi-static 
approximation the load history has a sinusoidal form [3]. 
However, if during an impact event internal damage 
occurs in the form of delaminations, it will have a 
noticeable effect on the load history in the form of an 
abrupt drop in the applied load (see Figure 3.4). This 
effect cannot be captured by a simple sinusoidal 
representation of the impact event. Nevertheless, we 
can still use this approach to obtain the maximum 
displacement that will be encountered during impact 
together with the maximum indentation. Alternatively, 
an energy balance can be set up with which similar 
results can be achieved.  

The two equations of motions for the TDOF system as shown in Figure 3.3 are: 
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Here we have already taken into account that km = 0. The equivalent stiffness keq is defined as: 

 b s
eq

b s

k k
k

k k



 (3.3.10) 

Figure 3.4 - exemplary force history during 
impact showing features of the delamination 
threshold load (Figure obtained from Schoeppner 
and Abrate [3]) 
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Where kb and ks are bending and shear stiffness of the beam, respectively. If we only consider non-
shear deformable beams we have: 
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where Iyy and L are moment of inertia and length of the beam, respectively. In the expression for kb 
the factor C represents the boundary conditions and is either 48 or 192 for either simply supported 

or clamped conditions. b
xxE  in expression (3.3.11) is based on lamination theory for beams and can 

be defined as [12]: 
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Again, d11 is the (1,1)-entry of the compliance matrix d. We can now express the contact force as: 
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where tm is the time until the force has reached its maximum. After some algebraic manipulation 
(see Pang, Zhao [9]) one can arrive at a single non-linear equation in terms of the maximum 
indentation αm , which can solved by the Newton-Raphson method: 
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where v0 is the impactor velocity at impact and the index m indicates the maximum value obtained 
during impact. The central deflection of the beam follows from: 
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While the applied load for an undamaged beam follows from (3.3.13) this equation is no longer 
valid once damage has occurred. In section 3.9 we will discuss how this damage is used to update 
the applied load.  

The alternative approach to get to displacement already mentioned relies on the fact that the 
incident energy from the impact is equal to the deformation energy of the structure consisting of 
contact, bending, shearing and membrane deformations in case of no energy dissipation due to the 
creation of damage: 

 imp c bs mE E E E    (3.3.16) 

Again, neglecting the energy due to membrane action and after some manipulation one can arrive 
at a non-linear relation in terms of the centre displacement wc [8]: 
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The maximum displacement wc can be found through application of the Newton-Raphson method 
once more. Multiplication with the bending stiffness kb then yields the applied load.  
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Either of these two approaches will render a maximum central beam deflection. The simulation will 
carry through until that displacement has been reached. The indentation found alongside can be 
used as an additional damage indicator for the top layer.  

3.4 Global structural analysis 

The load acting on the plate during an impact event was obtained in the previous section. This load 
will be used in this section to carry out a structural analysis of the impacted beam.  

3.4.1 Assumptions 

The main assumptions governing the global structural analysis of a composite laminated beam are 
listed below: 

 The laminates considered are symmetric resulting in a decoupling effect between the in- and out-of-

plane deformations. 

 The CLPT for laminated beams is applied (laminated beam theory (LBT)). This implies that the 

assumptions concerning plane stress are active. Further, Myy = Mxy = 0 everywhere and the Poisson 

effect and the anisotropic shear coupling are assumed to be negligible [12]. The latter is equivalent 

to saying that D16 = D26 = 0. 

 No membrane action or shear deformation is considered. 

 The beam is either simply supported or clamped at both ends. 

3.4.2 Stress analysis 

Unless stated otherwise all equations are taken from [12]. The situation under consideration is 
shown in Figure 3.5. For the computation of the in-plane stresses we need knowledge of the 
internal bending moment distribution. For both cases this is readily available. The in-plane stresses 
per layer then can be written as: 
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In equation (3.4.1) ijQ are the plane-stress reduced rotated ply stiffnesses and Mxx the applied 

moment per unit width. The matrix Q is obtained by taking the 3 by 3 plane-stress reduced stiffness 

matrix for an orthotropic ply, which is defined in the local ply coordinate system, and transform it 
to a global laminate coordinate system using tensor transformation. The superscript k denotes the 
kth layer of the laminate. In the second line of equation (3.4.1) Mxx has been replaced by the actual 
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moment M obtained from statics divided by the physical width of the beam b. In both cases the 
maximum bending moment occurs at mid-span and is equal to  

   ;  with M 0 for simply supported beams
4

r r

PL
M M  (3.4.2) 

The constant root moment Mr for the clamped beam has to be computed by solving the static 
problem of a beam containing several delaminations (see section 3.7) 

As we are also interested in the transverse stress components we can obtain these from 
considering the three dimensional equilibrium equations: 
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By rearranging these expressions and integrating with respect to z within each layer we obtain the 
relations for the stress components σxz, σyz and σzz : 
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In deriving the expressions we have already taken into account that any derivatives with respect to 
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Figure 3.5 – Composite beam under a point load with either clamped or simply supported boundary conditions 
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y can be ignored in laminated beam theory. The only variable in dependence of x in the expressions 
for the in-plane stresses is the applied moment, which is why the expressions for the transverse 
shear stresses can be written as: 
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From these expressions we see that the transverse shear stresses vary piecewise quadratically 
through the thickness. The transverse normal stress σzz can be written as: 
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It has to be noted that in case of a concentrated point load the derivative of the shear force does 
not exist. The only way this stress component can be recovered would be to model the impact as 
distributed load acting over a finite impact radius, which will be discussed in the next section. The 
integration constants Fk, Gk and Hk can be obtained from the condition that those stresses need to 
be continuous across the ply interfaces: 
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At the bottom of the laminate all stress components are zero, hence: 
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All further constants are then defined as: 
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With the exception of the transverse normal stress σzz for a concentrated load, it is possible to define five 

stress components in this way. However, the stresses due to the contact have to be taken into account 

which will be done in the following section. 

3.5 Local contact analysis 

Having obtained the stresses from a global structural analysis we proceed in this section to 
determine the contact stresses due to impact on a composite laminate. As mentioned before, an 
accurate knowledge of the stress state within the impacted structure is crucial to determine when 
and where a delamination will initiate. It is generally known, that during impact very high and 
localized contact stresses occur, which need to be accounted for. 

A schematic overview of the situation under consideration is presented in Figure 3.6. Note that 
different authors have been using different coordinate systems, which merely causes the 
positioning of the z-axis to differ ([16], [15], [17] and [18]). When comparing the results, this has 
been taken care of. After stating the governing assumptions for determining the contact stresses, 
the solution for semi-infinite bodies will be presented first followed by the finite thickness 
formulation and finally a comparison between the two. 
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3.5.1 Assumptions 

For the computation of contact stresses we can 
generally consider either half-spaces or finite 
thickness plates. The advantage of working with 
half-spaces, which assume infinitely deep material, 
is that closed form expressions for both the 
transverse normal and shear stress exist. However, 
when dealing with thin plates these results become 
rather inaccurate. If we consider a finite thickness 
of a laminate, no closed form solution to the 
problem exists and numerical methods will have to 
be used to arrive at the stress distribution. Both 
approaches assume an infinitely wide plate and an 

axially symmetric problem set up, i.e. polar coordinates are used and all derivatives with respect to 
θ are zero. Therefore the only non-zero stress components are defined in terms of a stress function 
as: 
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where the coefficients a-d have been defined in (3.2.7). These expressions naturally simplify when 
an isotropic material is considered. The main difference between the two approaches lies in the 
formulation of the boundary conditions when solving for the stress function Ψ. In the finite 
thickness approach two constitutive relationships are considered, isotropic and transversely 
isotropic. For the transverse normal stress σzz and the transverse shear stress σrz there is one 
particular radial position at which the stresses through the thickness are highest. For the normal 
stress this position is at r=0 and for the shear stress this position is at r=Rc. However, for the failure 
of a particular interface any position in between can be equally important due to the combined 
action of transverse shear and normal stresses. Therefore these stresses need to be computed for a 
range of values for z and r. 

3.5.2 Semi-infinite thickness approach 

The underlying assumption of this approach specifies all stress components will vanish if the z 
coordinate goes to infinity. Clearly, this is an assumption, which depending on the actual thickness 
of the structure one analyses, can be too simplifying. Nevertheless, this approach has been used 
extensively and almost all of the expressions for the stress components are given in closed-form 
which results in a quick assessment of the situation [16]. The expressions used have been taken 
from [15]. They have solved the problem of the elastic contact between a sphere and a transversely 
isotropic half-space based on Lekhnitskii’s formulation of anisotropic elasticity. The complete 

Figure 3.6 - schematic overview of the impact 
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derivation can be found in their paper and only the final expressions will be given here. The 
transverse normal and shear stresses are given as: 
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with: 
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In equation (3.5.3) s1 and s2 represent the solution to the fourth order differential equation in an 
axially symmetric coordinate system and are defined as: 
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where the coefficients a-d have been defined previously in section 3.2. The pressure distribution as 
shown in Figure 3.6 is given by: 

   2 20
c

c

p
p r R r

R
   (3.5.5) 

with p0 and Rc : 

  
1

3

0 1 22

3 3
;  

2 4
c imp

c

P
p R PR n n

R





 
   

 
 (3.5.6) 

In equation (3.5.6) n1 and n2 have previously been defined in equations (3.3.7) and (3.3.8). 
Simplifications of the expressions for σzz and σrz are possible for special locations. For the normal 
stress along z at r=0 we get: 



3.5 Local contact analysis 27 

 

 1 11 2
0

1 2 1 2

1 tan tanc c
zz

c

R Rs s z
p

s s R s z s z
  

      
        

       

 (3.5.7) 

Simplifying the expression for σrz at r=Rc yields: 
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Equations (3.5.7) and (3.5.8) will be used in the comparison against the finite-thickness approaches later on. 

3.5.3 Finite thickness approach 

In contrast to the half-space problem there exists no closed-form solutions as yet for the contact 
stresses when the finite thickness of the plate is considered. The governing equation for the stress 
function ψ can normally be rendered in a biharmonic equation. Solving this biharmonic equation 
yields four unknowns, two of which can be cancelled when conditions at infinity are considered as 
one part of the boundary. However, if we regard a finite thickness system, all four unknown 
coefficients need to be solved, resulting in a 4x4 matrix system (see section 3.5.3.1). Due to the 
complexity of the expressions involved a need for numerical integration is born. In what follows, 
two different ways of how to determine the transverse stresses in an impacted composite are 
presented. 

3.5.3.1 Solution involving Boussinesq’s equation 

In his paper, Talagani [18] combines the equations derived by Boussinesq with the Hankel 
transformation to arrive at two integral expressions for the transverse normal and shear stress. 
Boussinesq’s equation are given as: 
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The out-of-plane stresses for an axially symmetrical problem can be written in terms of the 
displacements as: 
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Here λ and μ are the first and second Lamé parameters used to define isotropic material. Inserting 
(3.5.9) into (3.5.10) and rearranging the expressions we arrive at: 
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Next the Hankel transformation is defined as: 
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where J0(ζr) is the zeroth order Bessel function of the first kind. This transformation can now be 
used to solve the partial differential equations in (3.5.9) and rewrite them as ordinary differential 
equations in the Hankel space, for which the solution is known. The solution for the functions in the 
r-z space can then be written as: 
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Finally we obtain the expressions for σz and τrz by inserting (3.5.13) into (3.5.11), resulting in: 
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where λ and μ are defined as: 
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The values for Ep and νp are taken from equation (3.2.3). It has to be stressed at this point that this 
approach is only valid for isotropic material as the constitutive modelling is solely based on the two 
parameters λ and μ. Using the expressions in (3.2.3) we homogenize the composite material and 
represent it as equivalently isotropic. It will be shown later how they compare to those derived for 
transversely isotropic materials. The coefficients C1 to C4 are determined by imposing that the shear 
stresses are zero at top and bottom surface and the normal stresses are zero at the bottom surface 
and follow a certain distribution on the impact site. The boundary conditions can therefore be 
modelled as: 
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With p(r) the pressure distribution at the impact site as given above (see Equation (3.5.5)). Since 
the integration is in terms of the transformed variable ζ we have to transform the pressure 
distribution as well, which results in: 
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Combining (3.5.14), (3.5.16) and (3.5.17) results in the following matrix equation: 
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This 4x4 system of linear equations has to be solved simultaneously for every ζ to render the four 
coefficients. Once these coefficients are obtained the stresses can be computed by numerical 
integration of expression (3.5.14). However, these integrals have “infinity” as the upper limit which 
poses a problem in terms of defining a reasonable limit for the numerical computation. Certainly 
there will be an end to the computations imposed by the limits of the computer the program is run 
on, since the computation of the determinant for high values of ζ yields unimaginable high values 
for the determinant. In fact, if nothing is changed in the settings of MATLAB then the program will 
return “infinity” after some time as a result, which automatically stops the computation. The 
behaviour of the integrand of the expressions in (3.5.14) is sinusoidal in nature with exponentially 
decaying amplitudes. The limit of the integration can therefore be determined by deciding when 
the integrand does not contribute noticingly towards the integrated stress value at given position z. 
It can be observed that the integrands are faster decaying as the computation marches through z 

Figure 3.7 - Integrand plots at different thickness location 
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resulting in smaller ζ values for the integration limit closer to the back face of the laminate (see 
Figure 3.7). Note, in Figure 3.7 σrz has been replaced with τ while σzz is simply σ. Obviously, at the 
top surface the integration would stop once the value of the prescribed boundary value for σzz has 
been reached by numerical integration. This value can then be used as limit for the subsequent 
steps in z. The integrands shown in Figure 3.7 are taken at r=0 and r=Rc for σzz and σrz, respectively. 

3.5.3.2 Solution used by Cairns 

In his PhD thesis Cairns [17] presented a slightly different way of solving the contact problem. He 
took Lekhnitskii’s formulation and imposed conditions at the impact face and the back face of the 
laminate, therefore losing the possibility to represent the solution in a closed form. Rather than 
integrating until infinity he defines the unknown stress function Ψ as infinite series according to: 
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Here J0 is again the zeroth order Bessel function of the first kind. Once more the four coefficients 
have to be solved for every m by imposing the same boundary conditions as above (see (3.5.16)).  

Inserting (3.5.19) into (3.5.1) we obtain: 
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where the apostrophe symbol denotes a derivative. The derivatives wrt r are given by: 
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whereas for z they are: 
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Inserting (3.5.22) and (3.5.21) into (3.5.20) results in the following expressions for σzz and σrz, which 
are necessary for solving the system: 
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In order to match the coefficients Am-Dm  the pressure distribution has been modelled as: 
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Rp is the radius of the plate affecting the solution, which has been taken as several times the 
contact radius in order to adapt to the increase in loading during the simulation. Combining (3.5.24)
, (3.5.23) and (3.5.16) results in the following system of equations: 
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This 4x4 system can now be solved at every m and the stresses subsequently summed to give the 
final value. Similarly to the first method, the question of the upper limit of the sum arises. How 
many terms should be included? The value of the normal stress at the impact surface is known and 
equal to p0. The summation can be carried out until the computed value at that point equals the 
value of p0. The resulting value of m can then be used as an upper limit for the remainder of the z-
coordinates. 

3.5.4 Comparison of the two approaches 

In this section we shall compare the results of the different approaches to finding the contact 
stresses near the area of impact. As we have seen above the only influence the actual layup of a 
laminate could have on the contact stresses is via the two parameters Er and νrθ. For the 
comparison we will use two quasi-isotropic layups, namely [0/45/90/-45]ns, where n is chosen 
between 1 and 3. We will also use two materials system with different degrees of orthotropy, 
defined as the ratio of the Young’s modulus in longitudinal and transverse fibre direction. As 
already discussed the solution using Boussinesq’s equations represents a homogenized isotropic 
material. In order to be able to compare this solution to a semi-infinite counterpart the approach 
developed by Dahan and Zarka [15] was used. In a limit process the solution to isotropic material 
can be found if s1 and s2 are approached to be 1. This solution is termed “DZ iso” in Figure 3.8. Since 
the plate only has two constitutive parameters the isotropic version of n2 as defined in (3.3.8) has 
to be used resulting in a different contact pressure p0,iso. The transverse normal stress σzz and the 
transverse shear stress σrz have been computed at r=0 and r=Rc, respectively. The ply properties are 
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given in Table 3.1. These values are typical for the material systems they represent. The properties 
for the steel impactor and the impact are also given in Table 3.1. 

Table 3.1 - Parameters for the comparison study 

Composite material E0,1 [GPa] E0,2 [GPa] G0,12 [GPa] ν0,12 [-] ν0,13 [-] E0,1/E0,2 [-] 

Glass/Epoxy1 M1 60.7 24.8 12 0.23 0.342 2.45 

Graphite/Epoxy3 M2 130.8 10.6 6.0 0.28 0.34 12.34 

Impact material E [GPa] ν [-] R [mm] M [kg] v0 [m/s] 

Steel 197 0.27 8 0.95 3.244 

We computed the maximum impact load on a simply supported beam for every laminate and used 
this value as input for the stress determination. It has been found that with low values for P the 
difference between the two approaches is less noticeable. This is why the comparison was carried 
out at the maximum load level, as this is the worst case that can be expected. The graphs have 
been normalized with the contact pressure p0,iso in the case of σzz and with the highest occurring 
shear stress value for σrz. In Figure 3.8 a) and b) the two different material systems for n=1 are 
compared while in Figure 3.8 b)-d) the cases n=1..3 for material M2 are compared. It can be seen 
that in all cases the isotropic version predicts about twice as high stress values for both stress 
components. This is due to the fact that when approaching the plate as an isotropic material it is 
attributed a stiffer Young’s modulus which results in a smaller contact radius for a given load and 
therefore a higher contact pressure p0. A comparison of Figure 3.8 a) and b) shows, not surprisingly, 
that for a material with a lower degree of orthotropy this difference is less pronounced. 
Considering Figure 3.8 b)-c) one can clearly see that the finite thickness approaches of Cairns and 
Talagani succeed in recovering the boundary condition at the back face of the laminate whereas the 
semi-infinite formulations show a clear residual value for both stress components. It can be 
observed that this residual values decreases with increasing laminate thickness. This is regardless of 
the fact that the maximum load increases with increasing thickness. It can further be said that an 
almost imperceptible difference between the two approaches exist for both the isotropic and the 
transversely isotropic version of σzz up until the mid-plane of the laminate. This cannot be claimed 
for the transversely isotropic shear stress component, not even for large values of n. Here the 
differences, especially within the first few interfaces are significant and might tip the scales when it 
comes to applying failure criteria to determine delamination initiation. Keeping in mind that the 
entire model should be able to be executed quickly with respect to initial design selection, choosing 
the semi-infinite approach might prove to be the preferred method as it provides an instantaneous 
analysis with conservative maximum shear stress predictions. The fact that the transversely 
isotropic version differs so much from the isotropic version has been explained. Although by no 
means perfect, approaching a composite plate with a transversely isotropic material behaviour will 
certainly provide more reasonable results, which is reflected in the literature reviewed. 

Before the solution for the contact stresses can be used in combination with the bending stresses 
they have to be transformed from polar coordinates to Cartesian according to [44]: 

                                                            
1 Material taken from Leissa and Narita [43] 
2 Assumed to be the same as for Graphite/Epoxy  
3 Material taken from Suemasu, Kerth [42] 
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Since we are dealing with a beam-like structure the values are only dependent on the x variable, 
simplifying the above to the following: 
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Now the two approaches can be combined into a single globally defined stress field. The next 
section discusses how this field is used to determine a possible delamination initiation site. 
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Figure 3.8 – Comparison of the two contact stress determination approaches for a [0/45/90/-45]ns laminate. 
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3.6 Failure analysis 

Before a delamination can be analysed in detail we need to establish at which interface the first and 
any subsequent delaminations will occur and, equally important, at which load level. To this end a 
vast range of failure criteria have been proposed which predict the onset of a delamination (see 
[5]). All of these criteria are based in one way or the other on one or more three dimensional stress 
components. The selected criteria for this project will briefly be discussed alongside with the main 
assumptions regarding failure initiation. 

3.6.1 Assumptions 

At this point a major assumption will be made with respect to the normal occurring failure modes. 
As mentioned before delaminations are always accompanied and preceded by other failure modes 
unless introduced artificially into a laminate. These preceding failure modes are localized in their 
nature and have a lesser to negligible influence on the compression after impact (CAI) 
performances of laminates [3]. The inclusion of these failure modes in the analytical model would 
certainly increase the complexity of it which would work counterproductive to the use this model 
should be put to. Keeping all of that in mind, and based on the fact that delamination initiation 
criteria are present, it was decided to focus solely on delaminations as the only failure mode 
present in the model. In all of the following considerations we will work with symmetry conditions, 
i.e. we assume that delaminations develop symmetrically with respect to the line of impact. In this 
context it is important to question the minimum size of a delamination from a macromechanics 
point of view. It has been found that a crack can be considered a delamination if it exhibits 
sufficient influence on the structural behaviour of the plate. The minimum length for that has been 
found at delamination lengths of about 100 times the diameter of a single fibre which corresponds 
to approximately 4-5 times the ply thickness. It is also commonly known that delaminations occur 
almost exclusively between layers of different orientation. Alternatively, some researchers say that 
multiple layers of the same orientation act as one single layer, which is why it is very difficult for a 
delamination to form within that layer. Based on this aspect Liu [35] formulated his criterion for the 
prediction of delamination area taking into account the bending stiffness mismatch between two 
adjacent layers. Therefore, in this work we shall only consider delaminations between differently 
orientated layers.  

3.6.2 Failure criterion selection 

When looking at the delamination initiation criteria reviewed by Orifici, Herszberg [5] it becomes 
clear that most of them have been developed for in-plane loading, since the transverse normal 
stress σzz is always compared to the transverse normal tensile strength. However, the nature of the 
loading considered here clearly leads to compressive transverse normal stresses. One criterion that 
differs between tensile and compressive transverse normal stresses is the one proposed by Brewer 
and Lagace [20], although developed for an in-plane loaded specimen. Another one not listed by [5] 
has been developed by Hou, Petrinic [21] and this considers the sign of the transverse normal stress 
by adjusting the criterion for different cases. The criterion from Brewer and Lagace [20] takes the 
following form: 
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where S4, S5 and Zc are the transverse shear and compressive strengths. Note that the tensile 
transverse normal stress has been left out since in the area of interest only compressive stresses 
occur. The criterion proposed by Hou, Petrinic [21] can be summarized as follows: 
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The complicating issue with this criterion is that the coefficients dms, dfs and δ are based on the 
matrix and fibre failure present in the laminate. While this certainly helps to obtain a more accurate 
picture it relies on FE analyses to obtain this failure state preceding the delamination. 

Frequent occurrences during impact are delaminations that form close to the back face due to the 
high in-plane tension loads. The criterion shown in (3.6.1) does not take this component into 
account. However, there are a number of criteria, which include the in-plane normal component in 
the same quadratic fashion as any of the other stress components, which would result in an 
adjusted criterion based on Brewer and Lagace [20]: 
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In all of the above shown criteria the stress values are based on the individual ply coordinate 
system. From the two stress analyses carried out in sections 3.4 and 3.5 only the global values are 
known. In order to be able to apply the failure criteria we need to transform the globally defined 
stress components to those defined in ply coordinates by the well-known expression: 
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Due to the possibility of directly applying (3.6.3) as a failure criterion it will be used as the current 
tool for deciding whether or not an interface is failing and a delamination is initiated. 

3.7 Delaminated beam analysis 

In this section the analysis for a beam with multiple delaminations embedded in its structure is 
presented. The derivations are based on LBT and feature two different approaches with respect to 
the contact formulation between the beam segments, constrained and unconstrained. The results 
of this section will be used in section 3.8 to compute the energy release rate (ERR) and stress 
intensity factors (SIF) and in section 3.9 for the computation of the equivalent bending compliance. 

3.7.1 Assumptions 
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The main assumptions are made when formulating the contact between the delaminated 
segments. Two different cases are being distinguished, namely constrained and unconstrained 
contact. During constraint contact it is assumed that the delaminated beam segments move 
together and do not separate. This constraint is relaxed when assuming unconstrained contact 
where individual beam segments are free to move with respect to other segments. However, while 
an opening of two segments is considered physically allowable this formulation also includes the 
physically inadmissible interpenetration of beam segments. In terms of the ERR choosing one 
formulation over the other this has important implications. The fact that no opening is allowed in 
combination with constrained contact means that no mode I delamination can occur and the 
computed ERR can be compared directly with the critical ERR during a pure mode II delamination. 
The unconstrained contact is able to predict opening of beam segments, indicating a mode II 
delamination. The advantage of using either of these approximations lies in the fact that they 
principally allow for closed form analytical expressions for the displacement functions of the beam 
segments, certainly when simple cases are concerned. A more advanced formulation of the contact 
between two beam segments models the interface as a series of springs, which are only active 
when these segments are in contact. While this method is the most accurate of the three contact 
formulations [34]it is also the most complex one. It involves numerical solution tools, as the 
definition of the spring is defined on the relative displacement of two or more beam segments, 
which is not known a priori. Since such a modelling is outside the scope of this thesis this form of 
contact will not be considered further. 

As already mentioned the derivations shown are based on LBT, i.e. that all assumptions pertaining 
to this particular theory are valid here as well (see section 3.4). However, we shall relax the 
assumptions regarding symmetry and balance of the layup. Since delaminations may occur 
randomly the resulting sublaminates are most likely neither symmetric nor balanced. In these cases 
the reduced bending stiffness matrix will be computed which takes the presence of the coupling 
matrix due to asymmetry in the layup into account. 

In all the derivations we still assume small deflections, i.e. that no in-plane forces will develop due 
to membrane effects. Also no shear forces will develop between the layers, i.e. any contact 
between delaminated beam segments is considered frictionless and the beam segments are 
continued to be non-shear deformable. 

3.7.2 Analytical approach 

The situation considered is shown in Figure 3.9. The pressure distribution shown in Figure 3.9 b) can 
be written as: 

         , 1 , 1 1k k k k k kp x k x w x w x     (3.7.1) 



38 Analytical model 

The spring stiffness kk,k+1 is based on the relative displacement of the two segments and represents the 

stiffness of the interface of two segments in contact. In the two extreme cases that are being considered 

here this pressure vanishes. For constrained contact we assume that wk = wk+1 while in unconstrained 

contact the stiffness of the interface is simply 0. Both result in pk,k+1 = 0. With that in mind the equilibrium for 

a beam segment as shown in Figure 3.9 b) can be written as: 
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where the prime denotes a derivative with respect to the coordinate x. Since shear deformations 
are not included the relation between curvature and out-of-plane deformation can be written as: 

 k kw    (3.7.3) 

The constitutive relation for a beam segment k relating the bending moment to the curvature is 
given as: 
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where b
xxE  is given in equation (3.3.12). Finally, combining equations (3.7.2) to (3.7.4) yields the 

governing differential equation for the beam segment k: 

   0IV
kk

EI w   (3.7.5) 

The general solution for each beam segment is obtained by integrating the last equation four times 
resulting in: 

   2 3
,1 ,2 ,3 ,4k k k k kw x C C x C x C x     (3.7.6) 
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Figure 3.9 - delaminated composite beam under point load. a) global overview, b) isolated beam element k with 
forces acting on it, c) detail of split beam segment 
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While the definition of b
xxE  for the undamaged part 0 poses no problem, some measures need to be 

taken when defining b
xxE  for any of the delaminated segments. As already mentioned, the created 

sublaminates probably do not satisfy the conditions of balance and symmetry with respect to the 
layup anymore. This means that the B-matrix, which governs the coupling between in- and out-of-
plane behaviour, is now fully populated and not zero anymore [4]. In order to take these effects 
into account but still be able to work with simplified expressions the reduced form of the D-matrix 
can be computed according to: 

 1
redD D BA B   (3.7.7) 

The inverse of the Dred matrix then yields the value needed in order to compute b
xxE  for any of the 

delaminated segments. 

3.7.2.1 Unconstrained contact 

In the case of unconstrained contact every beam segment needs to be treated separately, for a 
relatively simple case of a singly delaminated beam this already leads to 12 equations that need to 
be solved simultaneously. In order to explain the implementation of this particular contact 
formulation consider the following case shown in Figure 3.10. It depicts half a beam, either clamped 
or simply supported, it also shows the numbering scheme that has been adopted here. The beam 
segments are numbered from top to bottom for every delamination tip. Reflecting this numbering 
scheme is the interface matrix. It helps connecting the right elements with each other when it 
comes to formulating boundary and continuity conditions. The interface matrix for the current 
example looks like: 
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The number of rows reflects the number of delaminated segments at mid-span while the number of 
columns represents the number of different delamination length. Every delamination is clearly 
identified by ai and zi, its length and position within the beam, respectively. The boundary 
conditions for this beam are given as: 
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Here, k refers to the elements of the last column of the interface matrix in (3.7.8). Next to the boundary 

conditions there are kinetic and static continuity conditions at a delamination tip. If for example we take 

crack tip x2 and look at it as shown in Figure 3.9 c) we can write the continuity equation as: 
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The interface matrix previously defined helps in formulating these conditions properly and is 
further used to determine the ERR and SIF as will be shown later. Imposing both boundary and 

Figure 3.11 - Randomly delaminated half structure for constrained contact 
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Figure 3.10 - randomly delaminated half structure for unconstrained contact 
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continuity conditions for every 
delamination tip will result in a system 
of equations that needs to be solved 
simultaneously for the unknown 
displacement coefficients Ck,I – Ck,4, for 
k = 0..7 in this example. 

3.7.2.2 Constrained contact 

We consider again the case depicted in 
Figure 3.10. This time, however, we 
approach it using the constrained 
contact formulation. This effectively 
changes the situation to the one shown 

in Figure 3.11, where the individual beam segments have been merged to sections bounded by the 
different lengths of the delaminations. Each section now corresponds to a column of the interface 
matrix, i.e. that the interface matrix immediately shows which segments make up the section. 

In deriving the equations for the displacement we still use equation (3.7.6) as starting point. We can 
write the internal moment in each of the sections as: 
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Note that k now uses Roman numerals as shown in Figure 3.11. For the case of a simply supported 
beam M is given as 0.5Px . This means that two of the four unknowns in equation (3.7.6) are already 
taken care of, namely Ck,3 (=0) and Ck,4 (=-P/2). Double integration of equation (3.7.11) leads to: 
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It has to be noted that the flexural rigidity is now defined for each section according to: 

    
i k

k

EI EI  (3.7.13) 

where the summation is carried out over the unique entries in the ith column of the interface 
matrix. Just like in the case of the unconstrained contact we can formulate boundary and continuity 
equations. For the case of a simply supported beam these can be formulated as: 
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In the case of a single length delaminated beam, simply supported at its end (see Figure 3.12), this 
set of equations allows for a closed form solution of the entire displacement field. When starting 
with the second expression in (3.7.14) the coefficient C1,2 from equation (3.7.12) is readily available 
as: 

Figure 3.12 – Singly delaminated structure used as example 
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By observation it is always possible to find the next equation from the set of expressions in (3.7.14) 
which only contains one unknown at a time. Carrying on with the example of single length 
delaminated beam the next equation would be the rotation continuity at x1: 
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Finally, the last unknown coefficient C1,1 can be solved for by requiring displacement continuity at 
the interface: 
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In case of multiple different length delaminations this process will have to be repeated multiple 
times in order to obtain the full displacement filed. When the beam is clamped at both ends the 
same procedure has to be followed starting from equation (3.7.11). However, now the moment 
includes the previously unknown root moment which has to be incorporated as an unknown to be 
solved for. Therefore, the solution will not be as simple to obtain as it is for the case of a simply 
supported beam. 

3.8 Linear elastic fracture mechanics approach 

The growth of delaminations and effects related to crack forming is generally studied within the 
field of Linear Elastic Fracture Mechanics (LEFM). As already mentioned before, there are two 
distinct approaches within this field: the global view that uses energy balance in order to compute 
the so-called ERR and a more local view that looks at the near crack-tip stress field and computes 
the so-called Stress Intensity Factor (SIF). Both approaches are valid and have been used frequently 
over the past years. In this section both approaches will be discussed. The concept of the ERR has 
commonly been used to determine the development of one or several delaminations and will be 
used here in the same way. In order to get an update on the stress state of a delaminated stack it is 
important to know what the local stress field around this tip looks like, for which the concept of the 
SIF normally is used.  
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3.8.1 Assumptions 

The main assumptions made in this section are listed below. 

 The use of LEFM already implicitly assumes the material under consideration to behave in a linearly 

elastic fashion.  

 Only half of the structure will be examined in the following, implying that symmetry conditions are 

applied with respect to the z-axis. This assumes that the delaminations expand symmetrically in both 

directions, i.e. in case of a beam in a self-similar way. 

 Non-shear deformable beams will be considered. 

 For the computation of the SIF it is assumed that any delamination tip can be extracted as shown in 

Figure 3.9 c) and that in this case the top and bottom surfaces are traction free. 

 When using the solution proposed by Suo and Hutchinson [1] it is assumed that the interactivity 

between several delamination tips is accounted for in the magnitude of the SIF. The resulting 

singular stress fields will be superimposed. 

3.8.2 Energy release rate computation 

The solution from section 3.7 will be used in this section to compute the ERR for the beam in 
question. However, the full solution of the system of equations is not always necessary as we will 
see for certain cases. It remains important to know the displacement of the beam, certainly 
underneath the impactor, as this information will be used in section 3.9. 

We have mentioned earlier that the concept of the ERR is related to the global energy approach 
within the field of LEFM. This justifies the effort that has been put into determining the 
displacement field of the entire beam and implies that the result is a single value combining all 
modes. While for the constrained contact formulation this is not an issue, only mode II 
delamination can occur, it is erroneous for the unconstrained contact formulation, where the 
opening mode can occur as well. Both contact formulations are considered extremes in terms of 
representing the actual behaviour which is why they both should be regarded with care [28]. 

The method of obtaining the ERR will be explained next, followed by a brief discussion about the 
differences in the two contact formulation for different cases. 

3.8.2.1 Derivation of the energy release rate 

In its most general form the ERR following the applied displacement approach can be written as: 
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where U is the strain energy of the body and A the area created during the formation of a crack. 
This formulation is based on the work of Griffith and has been used by many researchers in the past 
[45]. One has to note, that when using the applied displacement approach the derivative of U with 
respect to A contains a derivative of the load acting on the structure P with respect to A via the 
chain rule, which is always negative [22]. In absence of any in--plane forces we can write the strain 
energy for a beam-like structure as: 
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This expression is valid only for an undamaged beam. The presence of one or several delaminations 
leads to a division of the entire length into several pieces. For a generally delaminated beam such 
as shown in Figure 3.10 the strain energy can be written as: 
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Here j represents the column of the interface matrix and the summation in i is over the unique 
elements of that column. The last item of the integration bound vector is L/2. The change in area A 
that is created during the forming of a delamination can be written as: 

 jA b a    (3.8.4) 

where aj indicates the considered delamination length. This means that now we only have to 
compute the derivative of U with respect to the delamination length aj. It will be shown later that 
for either the constrained contact or the simple case of one delamination this differentiation can be 
carried out analytically. The more general case will make use of a numerical forward difference 
scheme, which has been tuned such that for the simple cases this solution corresponds well with 
the analytical ones. When dealing with multiple delaminations, it is often assumed that all 
delaminations are equally spread throughout the thickness of the laminate and that they all growth 
in a simultaneous way. In this work, however, when delaminations of the same length occur the 
following approach will be adopted. Subsequently every delamination will be assessed individually 
by only changing its length by an amount Δaj. The differentiation of the strain energy wrt this 
changing length will then be computed based on the forward difference scheme until the change 
Δaj approaches 0. By assigning each delamination tip its own value for the ERR one allows for both 
length and relative placement within the lamination stack to influence the growth behaviour of all 
the delaminations present (Suemasu and Majima [29] and Andrews, Massabó [34]). These effects 
will be shown later. In contrast to most of the published literature the stacking information should 
be preserved as long as possible rather than homogenizing the material and spreading the 
delaminations equally. This should ensure potential suitability for optimization routines to be 
applied. 

When considering the constrained contact formulation (see Figure 3.11) the expression shown in 
(3.8.3) simplifies to: 
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Using equation (3.7.11) the strain energy can be computed with the knowledge of only the internal 
bending moment distribution. In the case of a clamped beam this distribution depends on the root 
moment, which is obtained by solving the system of linear equations. In the case of a simply 
supported beam, the internal bending moment distribution is simply Px/2. This allows us to write 
the strain energy for half the beam structure as: 
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where, nsec is the number of sections as defined in Figure 3.11. Note that x0 = 0 and xnsec+1 = L/2. 
Differentiating this expression with respect to the considered delamination length will once more 
yield the ERR: 
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This shows that for the case of a simply supported beam the ERR can be computed by only knowing 
the geometry of all delaminations present. The only problem with this particular equation is that it 
does compute the same value for equal length delaminations in contrast to the approach outlined 
above.  

3.8.2.2 Example: two unequal and randomly distributed delaminations 

Trying to visualize all that has been said above for a general case of a delaminated beam is 
impossible. Rather we shall try to bring more insight to this matter by looking at a two-
delamination system as shown in Figure 3.13. Similar studies have been carried out by Andrews for 
the case of a cantilevered beam [28]. We want to investigate the influence the longer delamination 
has on the lower based on the relative position of the two. To this end we will compute the ratio of 
ERRl/ERRl0. Here ERRl0 is the ERR of the lower delamination without the presence of the upper one. 
The result of this computation can be mapped and is shown for this case in Figure 3.14. The 
position of the two delaminations in terms of the interface they are located at is given on the 
ordinates. Note, that the lower delamination is measured with respect to the back face. The 
straight diagonal line represents the limit of the map, as combinations of delamination positions 
beyond this line are not possible. The two areas separated by the discontinuous line represent the 
two effects that can occur in multiply delaminated structures. To the left of this line the ratio 
computed is larger than one, which means that in this area the growth of the lower delamination is 
amplified by that of the upper one. In the area between the two lines the ratio is less than one, i.e. 
we have the reverse effect: the ERR of the lower delamination is shielded by that of the upper one. 
A qualitatively similar map can be created if the lengths would be swapped. 
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Figure 3.13 - Two delamination system 
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If we pick a location from each of the two areas we can draw the ERR of the lower delamination for 
a changing delamination length and a fixed upper delamination length. This has been done in Figure 
3.15. In Figure 3.15 a) we can clearly see the amplification effect mentioned earlier on the lower 
delamination. As the length of the lower delamination approaches and surpasses that of the upper 
one this effect diminishes. The shielding effect can be seen in Figure 3.15 b). While for the maps 
drawn in Figure 3.14 there was no significant difference between the constrained and 
unconstrained contact, a clear difference can be seen in Figure 3.15. This shows that both length 
and relative position of the delaminations within a structure play a role in the interaction between 
the delaminations. In both figures the discontinuity at the point where the lower delamination 
reaches the length of the upper delamination can be observed. This discontinuity can only be 
resolved using more advanced methods. 

At this point one last thing should be mentioned. Some of these expressions allow for the 
delamination length to go to zero, implying that it might be possible to compute the ERR for the 
initiation of a delamination. However, as these expressions have been derived within the context of 
LEFM this is strictly speaking not correct, as LEFM always assumes a pre-existing crack. In order to 
initiate cracks or delaminations we will therefore refer to stress-based failure criteria as discussed 
above. In presence of delaminations SIFs will influence the stress state. The derivation of these will 
be discussed in the following section. 
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Figure 3.14 - Map of amplification and shielding of the lower 
delamination in presence of a longer upper delamination 
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Figure 3.15 - Development of ERR of lower delamination for 
changing delamination length. a) Example for amplification, b) example for 

shielding 
 

3.8.3 Stress intensity factors at interface cracks 

Being able to compute the ERR for all delaminations within a structure is only part of the problem 
that has to be solved. In order to determine the next delamination site one has to be able to predict 
the stress state in presence of an existing crack. Naturally, this problem has received a lot of 
attention in the case of isotropic material, where cracks are placed randomly throughout the 
material and where those can grow in a direction determined by the loading. Here we are dealing 
with a particular type of crack, a delamination, which only occurs at interfaces within a laminated 
structure. The main difference between cracks in homogenous and dissimilar cracks lies in the fact 
that in the latter case delaminations occur in a mixed-mode fashion [22]. Another problem with 
interface cracks that is linked to this mixed-mode effect concerns the stresses near the crack-tip. It 
has been shown that these oscillate very strongly if the point of interest approaches the crack-tip. 
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This makes the accurate prediction of the individual modes difficult, however, the total ERR based 
on the interface SIF can always be defined clearly [25]. 

The analysis shown here is based on the work of Suo and Hutchinson [1]. They derived a solution 
for a semi-infinite crack lying at an interface between two infinite isotropic elastic layers under 
general loading. The situation is depicted in Figure 3.16. Basically, Figure 3.16 a) is comparable to 
Figure 3.9 c) and refers to the assumption made above. From the global beam analysis we can 
obtain the acting moments as depicted in Figure 3.16 a). Once these are known a system of self-
equilibrating edge loads can be defined as shown in Figure 3.16 b): 
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where the moments Mj and Mk are defined in equation (3.7.4): 
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Here the coefficients Ci,3 and Ci,4 are obtained from solving the system of equations resulting from a multiply 

delaminated beam and xa is the coordinate of the delamination tip. 

The two coefficients C1 and C2 in equation (3.8.8) are given as: 
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with: 

Figure 3.16 - Geometry of generally applied edge forces at 
delamination tip (Figure taken from [1]) 
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which means that they solely depend on the properties of the bi-material and the relative 

positioning of the crack. In equation (3.8.11) 3 4i i    for plane strain or    /3 1i i i      for 

plane stress and μi is the shear modulus of the segment. The value for the segment’s Young’s 
modulus has already been given in (3.3.12) and further explained in section 3.7. The values for the 
shear modulus μi and the Posisson’s ratio νi are obtained in a similar fashion from CLPT as: 
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 (3.8.12) 

This assumes that both layers above and below the delamination can be approximated by an isotropic 

material. It has to be stressed at this point that is a very simplifying assumption, however, in this way it was 

possible to define an interface crack between two sublaminates rather than an crack in a homogenized 

orthotropic material (see [28]). The SIF can now by expressed in complex form as: 

 1 2K K iK   (3.8.13) 

where 1i   . By using the relation between the ERR and the complex SIF and defining the ERR in 
terms of the self-equilibrating loads it is possible to write K as: 
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Where: 

 

   

 

2 3 3

2

2

1 1
,  

1 124 6 3 1

sin 6 1

1

1

1 1
ln

2 1

A I

AI

p

   

  








 

 
   

  











 (3.8.15) 

ϵ is known as the bi-material constant. α and β are Dundur’s parameter defined as: 
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where 1 2/  . In equation (3.8.14) only ω is still unknown. This dimensionless parameter is a 

function of the parameters α, β and η. Suo and Hutchinson [1] state that this parameter has to be 
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solved once numerically for a certain loading case and is then applicable to other loading cases. 
Further the dependence of ω on the other three parameters is relatively weak. In this work it has 
been assumed that ω varies linearly only with respect to η: 

 52.1 3     (3.8.17) 

One can express the complex interface intensity factor in terms of the classical mode I and mode II 
SIF: 

 i
k I IIKh K iK    (3.8.18) 

The two different SIF modes can now be written as the real and complex part of equation (3.8.18): 
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It has to be mentioned at this point that we assume that η ranges from 0 to 1 or that hk < hk+1. If 
that is not the case we have to redefine the equations adequately starting from (3.8.8). Note that 
all loads are defined per unit width.  

The question arises now in how far this method is actually applicable to real-life structures. Suo and 
Hutchinson [1] only give qualitative guidelines. They say that the crack has to be long enough with 
respect to the layer k and that the crack should be placed well within the structure. In his thesis 
Andrews [28] is more precise. He calculates the uncertainties using advanced numerical tools and 
states that the application of his model, which is based on the work of Suo and Hutchinson, is 
accurate if the lengths a and c shown in Figure 3.16 are greater than a certain length 

1/4
min , , , 1ic h i j k k   , where λ is the ratio of transverse to longitudinal Young’s modulus. This 

ratio is smaller than 1 for fibre reinforced composites meaning that cmin is always greater than the 
largest height. We shall therefore always try to meet these conditions and apply the loads at the 
minimum required distance. If delamination tips approach each other, this will not be possible 
anymore. As no alternatives have been found with respect to computing the SIF in that particular 
case the same approach as outlined above for the determination of the ERR will be followed. 

3.8.4 Near crack-tip stress field 

The SIF obtained in equation (3.8.19) can be used to compute the singular stress field near a 
delamination tip. The derivation of this particular field is beyond the scope of this work. A 
comprehensive review of this matter is given in Sun and Jin [22]. It is commonly defined in polar 
coordinates (see Figure 3.17) and for a crack lying at an interface between two dissimilar bodies the 
following expressions apply: 
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The indices 1 and 2 denote the layer above and below the delamination, respectively. a is the 
length of the delamination and ϵ the bi-material constant defined in (3.8.15). For a homogenous 
material this constant reduces to zero and it can be shown that in this case the expressions in 
equation (3.8.20) reduce to the well-known classical singular stress field for the individual crack 
modes: 
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Here, the stress field for mode I is given. Respectively, for mode II the expressions are: 

Figure 3.17 - coordinate system for near crack-tip stress 
field 
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The variables r and θ are shown in Figure 3.17. With these expressions the entire singular stress 
field around the delamination tip is defined when the tearing mode (see reference to crack modes) 
is neglected. Examples of these fields for a homogeneous material can be seen in Figure 3.18, 
where the singularities near the crack tip can clearly be observed. In this example KI = KII = 1. It can 
be seen from the expressions above that the order of magnitude of the SIF corresponds to the 
order of magnitude of the stress field surrounding the delamination tip. For a given stress 
component the corresponding mode is dominant. In the section these fields will be used to update 
the entire stress state in the damaged delaminated beam. 

 σxx σzz σxz 

Mode I 

 

Mode II 

Combined 

Figure 3.18 - Contour plots of singular stress field due to mode I and mode II opening (unit of the contours is Pascal) 

3.9 Damage model 

The final part of the analytical model is discussed in this section. After successfully detecting 
delamination initiation of one or several delaminations and computing both ERR and SIF for the 
current configuration, we will now discuss how these results will be used to update the applied 
force and determine growth of one or several delaminations. 

3.9.1 Equivalent bending stiffness and applied load update 

The occurrence of delaminations will alter the structural response of the beam, as it creates sublaminates of 

various lengths, thicknesses and elastic properties. This has a decreasing effect on the bending stiffness of 
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the beam and, because we use the applied displacement approach, consequently on the load acting on the 

beam. 

The displacement distribution discussed in section 3.7 will be used in this section to determine the 
equivalent bending stiffness of and the new load acting on the beam. This equivalent bending 
stiffness serves as damage index and can be used to update the global structural analysis from 
section 3.4. It is based on the concept that the potential energy at the point of application is the 
same for the delaminated structure and a beam with equivalent bending stiffness. Let us denote 
wc,u as the central beam deflection obtained from section 3.7 due to a unit load and wc,eq as the 
same deflection for a composite beam with equivalent flexural rigidity (EI)* under unit load given 
by: 
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where kb,eq is the equivalent bending stiffness. Stating that wc,u = wc,eq we can proceed to write : 
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 (3.9.2) 

which means that our updated equivalent bending stiffness can be written as (insert equation (3.9.2) into 

(3.9.1)): 

 ,

,

1
b eq

u c

k
w

  (3.9.3) 

where once more wu,c is obtained by simultaneously solving the system of equations due to the presence of 

one or multiple delaminations. In terms of a damage index affecting the entire bending compliance matrix d 

obtained from CLPT we rewrite the last row of equation (3.9.2) : 
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where we made use of the following relation: 
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Once the equivalent bending compliance entry 11d  is known we can define a damage index as: 
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Since for beam theory we only consider the (1,1) entry we can define the entire equivalent bending 
compliance matrix of the beam as: 
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If still needed, one can take the inverse of the left side of equation (3.9.7) to get the equivalent 
bending stiffness matrix D*. Finally, the force acting on the structure can be updated using the 
bending stiffness kb,eq from equation (3.9.3) according to: 

 , ,new b eq c appP k w  (3.9.8) 

where wc,app is the currently applied central beam deflection obtained from solving the impact 
problem (see section 3.3). It is important to mention that this update of the load acting on the 
beam always occurs just after the geometrical configuration of the beam changes due to newly 
created delamination sites or growing existing ones. The latter will be discussed in the following 
section. 

3.9.2 Growth of delaminations 

A delamination will start to grow if the computed value for the ERR is higher than the material’s 
interlaminar fracture toughness. This value depends on the two ply orientations enclosing the 
interface [40] In this application we will assume that this value is constant. There are, however, 
differences concerning the mode of the delamination. Generally speaking mode II interlaminar 
fracture toughness has a higher value than mode I [46]. We discussed the differences in the contact 
formulation and what the consequences would be for the ERR in section 3.7. For the constrained 
contact formulation mode II occurs alone while there is the possibility for a mode I participation in 
the unconstrained contact formulation. It is theoretically also possible to obtain the individual ERR 
for the two different modes from the SIF computation [25]. However, due to the inherent 
oscillatory behaviour of the stresses close to the delamination tip, defining an accurate value for 
the individual components is not possible without extensive numerical resources. Finally, since any 
mode I contribution is likely to be minor we shall ignore it here and simply use the value for mode II 
interlaminar fracture toughness. Therefore we have delamination growth if ,cr IIG G .  

Once a delamination is growing, one has to define by how much or how fast it is growing. In this 
work the following approach has been used. Once delamination growth has been determined, the 
length “a” of the delamination in question will be extended by a fix value “Δa”. Here Δa has been 
set to one ply thickness. Since a change in length of a delamination constitutes a change in the 
geometrical configuration the load has to be updated as discussed above. Once the new load and 
delamination load are known the new ERR for this configuration can be determined. If the new ERR 
is still above the critical ERR it means that there is still sufficient energy for the delamination to 
grow further and the steps explained above will be repeated until the crack is arrested. 

3.9.3 Updated stress field 

Knowing the state of damage and the corresponding equivalent bending compliance in addition to 
the SIFs and the near crack-tip field emanating from the delamination tips enables us to compute 
an updated stress field to determine the next failure site based on the failure criterion proposed in 
section 3.6. The role of the contact stresses at this point is unclear. The approaches discussed in 
section 3.5 are only valid for undamaged sections since it is unclear how a delamination at an 
interface would influence the stress distribution. One could argue that if the two sublaminates do 
not separate the approaches might still be applicable. However, it is more probable though that the 
creation of a delamination site and the stress field emanating from it have a rather significant 
influence on the contact stresses, which is not likely to be captured by any analytical method and 
would have to be investigated with numerical tools. It was decided to use the contact stresses as 
determined in section 3.5 and superimpose those together with the bending stresses and the 
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singular stress field emanating from the delamination tip resulting in the final updated stress field. 
We will consider the example from Figure 3.13 with the values given in Table 3.2. The laminate 
layup is [45/90/-45/0]3s and the basic ply properties are given in Table 3.2 as well. From equation 
(3.4.5) we see that the transverse shear stresses only vary through the thickness and remain 
constant otherwise (see Figure 3.19). The other reason why the bending stresses are shown 
separately lies in the fact that contact and singular stresses are significantly larger and in the 
graphical superposition of the area of interest the bending stresses would not make an impact. This 
can be seen from Figure 3.21, where contour plots of the contact and singular stresses for σxz are 
shown individually and combined. Note that the contours are in Pascal and the same scale has been 
used for comparison reason. The x and y axes represent the height and length of the beam, 
whereby the midspan has been taken as the plot origin and only a quarter of the length has been 
plotted as beyond that point the influence of contact and singular stresses for this case vanishes. 
The impact site can clearly be identified from the first and third plot in Figure 3.21 as region of 
highly concentrated stresses. 

Table 3.2 – values for example of Figure 3.13 and basic ply properties for IM7/8552 graphite epoxy composite 

P L au, zu al, zl 

500 [N] 0.127 [m] L/16 [m], 4tply L/8 [m], 16tply 

 E0,1 E0,2 G0,12 ν0,12 tply 

144.8 
[GPa] 

8.3 [GPa] 5.8 [GPa] 0.32 [-] 0.19e-3 [m] 

 
Figure 3.19 - Transverse shear stress distribution due to bending (for example in Figure 3.13) 

We know from the derivation of the contact and bending stresses that the boundary conditions are 
met. By inspection one can see, however, that this is not the case for the singular stress fields. 
Considering the order of magnitude of the stress levels the locations immediately above and below 
the delamination tips seem to show residual stresses at the boundary which are not negligible. To 
obtain a more detailed view the stresses along the boundaries have been plotted in Figure 3.20. 
The peaks in the stress values corresponds well with the location of the delamination tips. The 
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reason for these high residuals can be explained as follows. During the derivation of the SIF the 
boundary conditions on top and bottom of the beam were set to be traction free (see Suo & 
Hutchinson). The formulation of the singular stress field does not allow for the boundary conditions 
to be accounted for nor does it contain corrections for finite size. This lead the research to 
expressions for the stress field around a crack containing more than just the singular term with the 
aim to find a stress field such that the boundary conditions will still be met. There are two 
alternative approaches which allow for the inclusion of higher-order terms, namely the Williams 
stress function and the complex variable formulation due to Muskhelishvili (see [22]) Both 
approaches have been attempted, however, the results were not the expected ones and the 
implementation was certainly less flexible with solutions for cracks lying at interfaces not yet 
considered. For the sake of good documentation these attempts have been briefly summarized in 
Appendix (not yet written). Taking all of this into account it has been decided at this point that the 
current solution regarding the singular stress field will be used. The overall approach that has been 
followed allows for future researchers to take this framework and substitute a more suitable 
module for the computation of the SIF. 

Once the updated stress field is known the failure criterion can be applied again to check whether 
the next delamination has been initiated. With this the loop shown in Figure 3.1 is closed. At this 
point the impact simulation can be carried out until the maximum deflection is reached and the 
internal damage state can be extracted. In the following section this model will be put to use and 
evaluated based on a comparison with published results. 
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Figure 3.21 - contact and singular stress superposition for the example from Figure 3.13 
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4 Model application 

The model that has been build and discussed in the previous section will now be used to simulate 
several impact events, the results of which will be compared in terms of the damage created and 
the structural capabilities of the laminate after the impact. 

4.1 Simulation set up 

For the comparison of the model the paper by [47] will be used. They have investigated the effect 
of laminate stacking sequence on damage tolerance for centrally impacted composite plates. The 
material that they used was graphite epoxy IM7/8551-7 [48] has already been introduced and is 
summarized in Table 4.1. Certain properties could not be found in the data sheet and had to be 
assumed. The critical ERR has been reported in [46] for IM7/8552, which is assumed to be the same 
for the IM7/8551-7 system. 

Table 4.1 - IM7/8551-7 basic ply and strength properties 

Variable E0,1 E0,.2 G0,12 ν0,12 tply Xt Xc Zc S4 = S5 Gcr 

Value 144.8 8.3 5.8 0.32 0.19e-03 2757 1620 2004 100 11385 

Dimension GPa GPa GPa - m MPa MPa MPa MPa N/m 

The following laminate layups will be used for the simulation: 

Table 4.2 - test layups 

LAM1 [45/90/-45/0]3s 

LAM2 [453/903/-453/03]s 

LAM3 [30/60/90/-60/-30/0]2s 

LAM4 [30/60/90/-30/-60/0]2s 

LAM5 [45/(90/-45)3/(0/45)2/0]s 

LAM6 [45/(0/-45)3/(90/45)2/90]s 

LAM7 [452/902/-452/02]2s 

All layups have 24 plies, except of LAM7 which has an extra 8 plies. The reason for choosing this 
layup has to do with the fact that the effect of ply group thickness can be demonstrated very well 
using LAM1, LAM2 and LAM7. The length and width of the plate simulated were 12.7cm and 
7.62cm and correspond with the impact specimen size reported in Dost et al. The impact test they 
conducted featured a 5.44kg steel sphere with a radius of 0.8cm. Every layup has been simulated at 
three energy levels: 15, 20 and 25 J. Although it has been previously stated that 20 J would be the 
upper limit for the model considered it would imply that for certain laminates only a single 
comparison point would have been possible. The energy levels chosen here do not correspond 

                                                            
4 Taken from [40] (table 6.1) 
5 Taken from [46] for IM7/8552 
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exactly with those reported in [47], however, as these were not entirely fixed across the range of 
laminates it was chosen to select energy levels which would cover a big range of the tests 
conducted by . Knowing the impact energy and mass the impact velocity needed for the impact 
simulation was easily obtained. In order to see what influence the choice of contact formulation has 
all simulations were run with either constrained or unconstrained contact. 

The model from the previous section has been programmed with MATLAB®. The entire source code 
including a flow chart with brief descriptions explaining the whole programme has been provided in 
Appendix (only raw at the moment). Different possibilities with respect to how the programme 
behaves when one or multiple delaminations occurred were considered. This discussion can be 
found in Appendix XX. At this point it is important to know the settings of the simulations and any 
possible implications thereof. With respect to the SIF it has been decided that the singular near 
crack-tip stress field at every delamination tip will be used in the simulation to update the stress 
field in the damaged beam. The other major consideration concerned the continued application of 
the failure criterion at an interface which has been found to fail at a previous load. For the 
simulation shown here it was decided that even though a particular interface was “acting” as a 
delamination already, the failure criterion proposed would still be used on that interface to check 
whether failure would be detected at another distance away from the impact site. This implies that 
even though the delamination does not grow from a fracture mechanics point of view (G > Gcr) it 
might still “grow” as the stresses ahead of the tip are large enough to render the failure criterion 
larger than unity. Only if the delamination is actually growing as discussed in chapter 3 will this 
check stop. While this way of looking at delamination growth is different than what has been 
discussed in chapter 3 it is still based on the concepts of LEFM via the SIF and the corresponding 
singular stress field emanating from the delamination tip. Further the method applied by Choi and 
Chang [36] is very similar in that they also use stress-based criterion to determine the extent of a 
delamination. 

Finally, it has to be mentioned that the comparison with the results published by Dost, Ilcewicz [47] 
can only be in a qualitative manner, since in they conducted experiments on plate-like structures 
with delaminations that were fully enclosed by surrounding material. The current model uses 
beam-like structural analysis with delaminations that span the entire width of the beam, which in 
this comparison equals the width of the plate.  

4.2 Impact damage 

After impact testing one would like to inspect the internal damage state created. Normally, this is 
done with some form of non-destructive testing, such as pulse-echo scans. These scans then reveal 
the state of damage when viewed from above. Alternatively, one can cut the laminate at the impact 
site to expose the internal structure and inspect it under a microscope. Interesting imagery of both 
techniques can be found in [40]. Delaminations due to impact are found at nearly every interface 
and most of the time in an unsymmetrical arrangement, i.e. that smaller delaminations are located 
closer to the impact site whereas the larger delaminations are placed near the back face. In Figure 
4.1 the internal damage state of [45/90/-45/0]3s is shown for two impact energies, following the 
unconstrained contact formulation. Due to symmetry only half of the structure is shown, whereby 
the line of symmetry coincides with the line of action of the load P indicated. In Figure 4.1 a) it can 
be observed that the damage has not yet spread beyond the mid-line of the layup. This is in stark 
contrast to the observations made in [47]. The damage state in Figure 4.1 b) is more extensive, 
however, the expected cone pattern can still not be observed. In Figure 4.1 c) the corresponding 
load-displacement graphs are shown. The drops in the impact load result from either a growing 
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delamination or the creation of a new delamination. Towards the end of the 20J impact there is a 
huge drop in load which corresponds to the creation of the two delaminations right underneath the 
midline in Figure 4.1 b). This observation has been made with other simulations as well. There are 
two possible related reasons for this behaviour. Every time a new delamination is created at an 
interface there is a jump increase in displacement due to a unit load and accordingly a drop in load 
due to assumption of applied displacement. When a new delamination is defined at an interface 
below the mid-line this jump is more intense in magnitude resulting in rather large drop in force. 
While the method of solving for the central deflection of a multiply delaminated beam is correctly 
applied this large drop seems to be a direct consequence of the applied beam theory. The other 
reason connected to this concerns the assumption of applied displacement. While this assumption 
serves to simulate test set ups it will not be encountered in real life, where more appropriately a 
mix of applied displacement and force would occur.  

a)  b)  

c)  

Figure 4.1 - Internal damage state of [45/90/-45/0]3s after an 15J (a) and after 20J (b) impact. Load vs displacement graphs (c) 

In their paper Dost, Ilcewicz [47] only use the non-destructive technique to inspect the internal 
damage state, since they intended to test the impacted specimen afterwards. This means that the 
first comparison will be based on the damage diameter due to impact. Delaminations due to impact 
are not penny-shaped as often assumed but obtain a shape that resembles a peanut (see [49]) 
whereby the longitudinal axis is aligned along an angle defined by the ply orientation encompassing 
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the delamination. When several of these peanut-shaped delaminations are viewed from top a circle 
can be described which contains all of the damage. The diameter of that circle is called the damage 
diameter and used as measure for the impact resistance of a laminate. Since the current model is 
based on a one dimensional beam model, the longest delamination in the stack will be used for the 
comparison. For the two cases of unconstrained and constrained contact these values have been 
summarized in xx a) and b) and compared with the values reported for the damage diameter in [47] 
in c). The overall trend shown in Figure 4.3 c) and reported in [47] describes a larger damage 
diameter for increasing impact energies. The same observation can be made for LAM2 irrespective 
of the contact formulation used. The relative position of LAM2 with respect to the other laminates 
also corresponds well with [47]. It is mentioned that for this laminate large planar delaminations 
occur due to the increased ply group thickness compared to LAM1 and LAM7. Figure 4.3 shows the 
internal damage state for LAM2 and LAM7 for a 15J impact event. Together with Figure 4.1 a) this 
observation can be confirmed. The predicted delamination diameters correspond in terms of order 
of magnitude, but almost without exception are several times larger than the test results. The 
reason for this and the lack of trend in the predicted results could lie in the fact that the current 
model is not able of modelling two-dimensional delaminations and assumes delaminations to be 
through the width of the beam. Further, the fact that other damage modes are more dominant 
after impact levels of 20J ([40]) and not considered might provide another explanation as to why 
the longest delamination only might not work as damage indicator. 

a)  b)  

Figure 4.2 - internal damage state of a) [452/902/-452/02]2s and b) [453/903/-453/03]s after 15J impact 

LAM7 and LAM5 in Figure 4.3 a) and b) stand out from the rest by the seemingly random behaviour. 
This behaviour, however, can be explained when looking at the internal damage state of these 
lamaintes for the corresponding contact formulation. Those are shown in Figure 4.4. The top row, 
which represents LAM5 is difficult to interpret, as it is not clear which mechanism in the model 
would keep the delaminations in the upper half for a higher impact energy, when before the 
delaminations were spread through the entire stack. The situation is reversed for LAM7 (Figure 4.4 
bottom row). Again though it is unclear why in the bottom left graph LAM7 features a relatively 
long delamination rather than several through the thickness delamiantions as shown in the bottom 
middle graph. It is believed that this has to do with the fact that for different impact energies the 
force that would lead to a new delamination might occur just before further growth of an existing 
delamination. With the occurrence of a newly delaminated interface this growth might just be 
prevented from happening leading to the state that can be seen in Figure 4.4. 
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a) 

 

b) 

 

c) 

 

Figure 4.3 - comparison of impact damage: unconstrained (a), constrained (b) and data taken from [47] 
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Figure 4.4 - internal  damage state for [45/(90/-45)3/(0/45)2/0]s (top row) and [452/902/-452/02]2s (bottom) for various 
impact levels (left to right: 15J, ,20J and 25J) 

Although the current model in itself will not be able to predict a two-dimensional damage by a 
single run, a compound solution can be obtained. This involves running the same simulation twice: 
once with the original layup and plate orientation and a second time with the plate dimensions and 
layup rotated by 90 degrees (see Figure 4.5). This will allow for the definition of a damage footprint 
in the form of an elipse (see Figure 4.6), by defining the largest delamination from the original 
analysis as one axis of the elispe and the largest delamination of the rotated analysis as the other 
exis of the elipse. The analysis stays the same only now the original plate’s width has to be used as 
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Figure 4.5 - rotation of plate and layup 
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length and vice versa. Also the layups change by 90° as observed in Figure 4.5. Originally the 0°-
fibres are aligned with the x axis, however, when the plate is rotated the axis system stays and the 
0°-fibres now become the 90° fibres. 

This approach has been applied to LAM1 and LAM7 for a 15J and 20J impact. Once the damage 
envelope has been defined the area of the ellipse can be computed and from that value the 
diameter of a circle with equivalent area can be calculated. The results are summarized in Table 4.3 
and a visualization for the 15J event is provided in Figure 4.6 and Figure 4.7. 

Note that this analysis has been carried out using the unconstrained contact formulation. The 
prediction for LAM1 is still a factor of 3-4 higher than the results published in [47] and for LAM7 
there is still a decrease in the damage diameter for an increase in impact energy. At this point more 
analyses are necessary to provide a thorough explanation for this behaviour. When using this 
approach one has to be aware of the fact that a beam analysis is conducted on a specimen where 
the length is shorter than the width. 

 

 

Figure 4.6 - planar view of elliptical delaminations for [452/902/-452/02]2s obtained by rotating the analysis frame 

 

 

Table 4.3 - equivalent diameter [cm] from 
two-dimensional  damage analysis 

 15J 20J 

LAM1 5.15 
 

6.35 
 

LAM7 6.16 
 

3.54 
 

 

Figure 4.7 - internal damage state for [452/902/-452/02]2s in normal 
and rotated configuration 
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4.3 Damage tolerance and optimization criterion 

Next to damage resistance, which indicates how well a laminate can contain damage, the concept 
of damage tolerance of a laminate is as important. It describes the ability of a laminate to cope with 
loading after impact has taken place. Normally, CAI tests are performed to assess this property 
since delaminations are mostly effective during compressive loading. Delaminations have a 
decreasing effect on compressive load carrying capabilities. Since carrying out CAI analyses was not 
part of the current work another way had to be found to compare the results of the simulations 
with the results published in [47]. A criterion was needed that would be able to rank the laminates 
in a similar fashion to CAI results, i.e. it should combine the certain aspects of the internal damage 
state and structural performance of the delaminated beam such that it would reflect a CAI analysis 
and can be used as criterion in an optimization process. To this end the following three items will 
be combined in a criterion: the equivalent bending stiffness, the longest delamination and the sum 
of delaminations. The latter two will be weighed with respect to their position within the stack. The 
function is then formulated as follows: 

 

0 0
max

0, max 0 0

2 2i
eq

ib i

h h
h hK L L

f
K a h a h

 

    (1.1.1) 

A higher function value means a better laminate after damage, i.e. shorter delaminations placed 
towards impact and back face of the laminate will result in a better equivalent bending stiffness and 
consequently in better CAI result. Since in bending or compression analysis the thickness of the 
structure almost always appears in a cubed fashion, a delamination further away from the 
midplane will be less detrimental to compressive loading than a delamination in the middle.  

The results of the simulations in terms of this function value are summarized in Figure 4.8 a) and b) 
for the unconstrained contact formulation. In the same figure the results for the CAI experiments 
from [47] are presented as well (Figure 4.8 c)). To start with we focus on LAM1, LAM2 and LAM7 
where the same trend for these laminates can be observed as reported in [47]. As the ply group 
thickness is increased from one to three plies the function value decreases, similar to the reported 
CAI values for these laminates. Also the fact that LAM2 obtains the lowest score agrees well with 
the tests conducted. The reason for this was based on the fact that when plies are grouped 
together larger planar delaminations would occur, which was already mentioned before and can be 
observed by looking at Figure 4.1 and Figure 4.2. 

From Figure 4.8 c) it can be seen that LAM3 performs best in the CAI despite the overall larger 
laminate thickness of LAM7. However, the predictions for LAM3 and LAM6 both show very irregular 
behaviour for both contact formulations. This is why these two laminates will be looked at in more 
detail trying to explain what causes this seemingly random behaviour. This will be done for the 
constrained contact formulation (Figure 4.8 b)). 

4.4 Discussion of the results 

In this section the results of the simulations will be discussed. A more detailed dissemination of 
LAM3 and LAM6 for the constrained contact formulation precedes a more general discussion of the 
entire model.  
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a) 

 

b) 

 

c) 

 

Figure 4.8 - Damage tolerance comparison using (1.1.1) and CAI results from [47]. Unconstrained (a) and 
constrained (b) contact formulation 
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The three internal damage configurations after impact for LAM3 are shown in Figure 4.9.The 
change in function value for LAM3 from 15J to 20J makes sense when looking at the internal 
damage configuration. Overall larger delamination sites lead to a decrease in equivalent bending 
stiffness as well as the second and third term in equation (1.1.1). While this is as expected and does 
not pose any questions the increase in the function value for the 25J impact to a value above that 
for 15J is certainly explainable by looking at the internal damage state, however, does not seem to 
follow any particular logic. The delamination interfaces are the same as for the lower two energy 
levels, however, contrary to what one would expect the lengths of the delaminations stayed below 
those of the 15J impact. It is noticed that the creation of each new delamination in the case of an 
25J impact occurs earlier than in the case of a 15J impact. This has to with the fact that the impact 
load necessary to produce high enough failure stresses is reached slightly earlier for the 25J impact 
than for the 15J impact. It is possible then that due to the chosen time increment the simulation 
carried out in this unexpected manner.  

   

Figure 4.10 - internal damage state for [45/(0/-45)3/(90/45)2/90]2s for various impact levels (left to right: 15J, ,20J and 25J) 

The internal damage states for LAM6 for the three impact levels are shown in Figure 4.10. Again the 
20J impact appears to fall out of the sequence, because it presents a rather different damage state 
than the 15J or 25J impact. The parameters for the function evaluation for all three cases are given 
in Table 4.4.  
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Figure 4.9 - internal damage state for [30/60/90/-60/-30/0]2s for various impact levels (left to right: 15J, ,20J and 25J) 
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Table 4.4 - terms of the function to evaluate damage tolerance for [45/(0/-45)3/(90/45)2/90]2s 

Eimp 
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a h
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0

0

2i

i i

h
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
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15 5.8705e-002 2.4836e+000 4.0584e+001 4.3126e+001 

20 5.4437e-003 2.7644e+000 1.2821e+002 1.3098e+002 

25 4.1615e-002 2.1940e+000 2.9403e+001 3.1638e+001 

The main differences are observed in the equivalent stiffness term and the summation of the 
delaminations. According to the predictions, having delaminations across the entire stack results in 
a lower equivalent bending stiffness. The difference with respect to the other two impact events is 
one order of magnitude. The summation of the delaminations obtains a value which is one order of 
magnitude higher mainly due to the increased number of delaminations. However, when 
comparing the orders of magnitude of these two terms it becomes apparent that the summation 
term overshadows the stiffness term by several orders of magnitude, which is why the lower 
performance in terms of stiffness for the 20J impact has hardly any effect on the function value. 
The reason for the stiffness term to be so low can again be explained by the way the central 
displacement of the beam is solved for. By including judiciously chosen factors one can aim to bring 
all terms to the same order of magnitude such that a more reliable comparison can be carried out 
in case of different numbers of delaminations. 

The application of the model to published results is inconclusive at this point. Some aspects, such as 
the relation between LAM1, LAM2 and LAM7, as mentioned in [47] have been captured well by the 
model while for example the damage created did not correspond well with experiments [47]. The 
mayor difference between the model and the results from the observations is the missing 
delaminations in the lower part of the laminates for a variety of the simulations carried out in 
connection with the cone-shaped damage state. This might be due to the fact that preceding failure 
modes such as shear and matrix cracks and fibre breakage were not considered as delamination 
initiators and other failure modes in the model. It is plausible that under loads that occurred during 
the simulation such cracks might have formed in the lower part of the laminate. The other factor 
that most certainly has an influence is the fact that the structure considered in this model might be 
ill-suited for comparison. Having delaminations spanning the entire width of the beam, which takes 
the value of the impact specimen used in [47], will have a profound impact on both the deflection 
and thus stiffness of the delaminated beam and the ERR and SIF values.  

Assuming applied displacements has led to the continuous update of the force acting on the 
structure. While drops in the force displacement curve indicate a change in the structural behaviour 
due to internal damage, large drops such as shown in Figure 4.11 for the graph belonging to the 20J 
impact are unlikely to occur in real life. A real impact event is neither purely governed by applied 
displacement nor by applied force but rather by a mix between the two. It can be observed that the 
sudden drop in load corresponds with the creation of delaminations in the lower half of the 
laminate. The same observation can be made for other combinations of laminate layup and impact 
energy. Again, a possible explanation of this phenomenon lies in the fact how the central 
displacement of a multiply delaminated beam has been obtained, which serves as input for the 
force update. It is highly probable that the exclusion of shear deformations leads to unrealistic 
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displacement values which cause the load to drop so significantly. No clear observation can be 
made about the differences in constrained vs. unconstrained contact formulation, which is to be 
expected as both are neither wrong nor correct but simply attempt to represent reality from two 
extreme points. 

Finally, it is impossible at this point to judge how influential the adoption of the LEFM concept was. 
While the computation of the ERR is straightforward for a given displacement field, the SIFs, and 
the way they have been computed for each delamination tip, still left some questions. Determining 
the extent of delamination damage based on the interlaminar stress values has been done before, 
however, the correctness of the stress field surrounding the tips is crucial for a successful 
application of such a criterion. 
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5 Conclusions and recommendations 

In this chapter the conclusions with respect to the work performed will be discussed. Finally, 
recommendations for future work will be included as well. 

5.1 Conclusions 

The first thing to ask when trying to conclude on something is whether the goal that has been set in the 

beginning has been achieved, partly or wholly. To this end the research objective for this project will be 

given again: 

To develop a (semi-)analytic model for multiple delaminations in an impacted composite plate by obtaining 

an accurate representation of the stress field near the impact zone, using failure criteria in combination with 

fracture mechanics concepts to determine conditions for delamination initiation and growth, and to 

investigate the interactions between delamination zones. 

Overall it can be concluded that this objective has been accomplished. A model has been created, 
which: 

 based on a quasi-static approach computes the central displacement of a beam, 

 predicts the stress state accurately prior to first damage initiation, using either semi-infinite 
plates or plates with finite thickness 

 predicts the first and all subsequent delamination using a modified stress-based 
delamination initiation criterion 

 compute the deflection of beam segments or sections depending on the contact 
formulation chosen 

 computes the ERR for every delamination tip individually based on the displacement field 

 uses a published approach for the determination of the SIF at the delamination tip for the 
computation of the near crack-tip singular stress field 

 updates the impact force when delaminations are growing or new ones created 

When developing the model care has been taken to keep it as modular as possible so as to make it 
adaptable for future use. By simply replacing certain modules, performance in terms of time and 
accuracy should be achievable.  

This model has been used to simulate impact events of increasing impact energy on quasi-isotropic 
laminates using either the unconstrained or constrained contact formulation. The obtained results 
have been compared with published ones in terms of damage resistance and damage tolerance. In 
the case of damage resistance, which is measured in terms of the damage diameter, the predicted 
results have been found to be in reasonable to poor agreement, based on the considered laminate. 
An attempt has been made to use a rotated analysis to determine a two-dimensional state of 
damage. Using this data the predicted damage diameter was still 3 to 4 times higher than 
experiments have shown. This result is encouraging considering the fact that a one dimensional 
structural element is used with through the width delaminations. The absence of delaminations in 
the lower half of the laminate for certain configurations has been noted. In terms of damage 
tolerance no quantitative comparison was made but rather a qualitative comparison based on a 
criterion which would be fit for optimization purposes. Again encouraging results for a series of 
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laminates have been obtained, while the proposed criterion seemed to be ill-adapted for other 
laminates. 

During the building of the model and the analysis of the results three main issues have been 
encountered. The first one concerns the computation of the stress intensity factor at the 
delamination tips. The published approach [1] has been used by a variety of researchers, however, 
when implemented in connection with the singular near crack-tip field excessive residual transverse 
stresses were found at the top and bottom boundaries of the beam. Secondly, the solution invoked 
for solving the problem of a multiply delaminated beam is based on LBT, neglecting shear 
deformations. There are situations throughout the simulation process where not all of the 
conditions necessary for the application of this theory are met, This might yield unrealistic 
displacement values, which subsequently lead to large drops in the impact load. This last remark 
leads to the third and last main issue. During the simulation applied displacements have been 
assumed, which is often used in laboratory environments. The actual impact event though cannot 
be captured by this simplifying assumption and rather features a combination of applied 
displacement and force. 

This implies that next to the encouraging results seen already there is still plenty of work to be done 
solving this particular problem. Some useful recommendations that might help future researchers 
with this task are given below. 

5.2 Recommendations 

 Throughout the project interesting ideas with respect to improving the current model 
occurred which will be presented here as recommendations for future work: 

 Further investigation into the Williams stress field or the complex variable formulation for 
cracked configuration, with emphasis on multiple interface cracks, is desired, as it presents a 
method for computing the entire stress state, including SIF, in a cracked body, whilst 
considering boundary conditions. 

 The ERR definition by Hwu & Hu and Banks-Sills using the Stroh Formalism are potentially 
the way forward for composite LEFM. However, they rely on FE input for the computation of 
the SIF (Banks-Sills uses M-integral in combination with FEM). This probably is the most 
accurate when it comes to defining SIF at an interface between two composite plies, 
however, it lacks simplicity when trying to implement it in the current framework. 

 The exclusion of matrix and shear cracking as preceding and separate failure modes has to 
be re-evaluated. They form an integral part of the damage mechanism and it might 
therefore be crucial to incorporate them, if not necessarily from a structural point of view 
but from a phenomenological point of view.  

 Proper in-situ strength parameters as well as fracture toughnesses should be used. Both are 
dependent on the angle difference of the interface. Also a mix-mode delamination growth 
criterion in cases where both modes occur is advisable. 

 The current LBT needs to be updated to incorporate shear deformations and possibly even 
root rotations. Further, sublaminates possess coupling effects which also influence the 
overall deflection of a multiply delaminated beam. 

 Use the spring-contact model to accurately define the interaction between beam segments 
for improved deflection prediction. 
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 Reconsider the assumption of applied displacement. A combination between applied force 
and applied displacement will be able to represent the actual behaviour more closely. In this 
context it might be even advisable, to consider using a dynamic approach wherein the 
stiffness of the structure is constantly updated. 

 Currently a beam-like structure with through-the-width delaminations is considered. To 
approach a more realistic state of damage either the analysis should be subjected to several 
rotations or circular and rectangular plates should be considered, which are able of 
containing a delamination within the structure. 

 A hybrid solution whereby parts of the analysis is carried out by FEA is conceivable and 
might yield the best compromise in terms of time vs. accuracy. 
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Appendix A – MATLAB Code 
 

%% -------------------------- Master_simV2.m ------------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% masterfile for the simulation of a low-mass, low-velocity impact event on a given 

% structure. A quasi-static approach is used (justified by the paper from 

% Swanson(1991), which will have an influence on the way the impact force is 

% calculated (see Pang et al, 1991) but also how the simulation is carried out (see 

% Weirdie and Lagace, 1998) 

% The flowcharrt from notebook 1, p.112 will be followed in order to arrive at the 

% final damage state in the structure. To this end, a variety of modules will be 

% called in order to set this up as flexible as possible. 

%-----------------------------------------------------------------------------------% 

%  the various modules are: 

% - input, setting up the problem, material used, geometry of the structure, boundary 

% conditions applied 

%  

% - impact_load, computes the impact load and indentation during the impact 

%  

% - stress_state_pristine, calculates the stresses in the structure until the first 

% failure is detected, based upon a selected failure criterion 

%  

% - delamination_tool, module for the computation of the beam segement displacement, 

% energy release rate and the virtual crack growth, (stress concentration factors), 

% updates the stiffness of the structure for subsequent stress calculations 

%  

% - stress_state_damaged, once the structure is damaged, it's internal stress state 

% will change 

%-----------------------------------------------------------------------------------% 

% author: J.J. Kurpierz 

% Version: V2 

% date: 15.11.2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% MATLAB initiation 

clear all 
close all 
clc 
format short e 
  
%% Variable declaration 

% the global variable "dam" will be used to pass information between the LEFM_tool 

% and the master file 

global dam tar imp sim 
  
%% Input 

% load the input file  

input_funcV2(); 
  
% create filename 

filename = ['LAM' num2str(sim.lam) '_' num2str(imp.Ei) 'J_C'... 
    num2str(sim.contact) '.mat']; 
fprintf(1,['Simulation data will be saved to "' filename '" ...\n']) 
  
%% Obtain impact histories 

% impact load Pt, indentation alpha and central deflection wc 

[impact] = impact_funcV4(); 
Pt = impact(:,1); 
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alpha = impact(:,2); 
wc = impact(:,3); 
  
% save the displacement to structure SIM 

SIM.wa = wc'; 
SIM.tvec = impact(:,4); 
  
%% 1st leg - until first damage 

% call the stress computation programme for the undamaged laminate. Indicate with the 

% flag which contact stress computation is to be used: "0" - simple analytical version, 

% based on Dahan and Zarka or "1" - Cairns solution. Increase the load until the 

% first "real" delamination is found. 

stressflag = 0; 
  
% matrix FAIL indicates at which interface and at which distance away from the impact 

% the first "cell" fails. the vector failinfo summarizes that by stating through the 

% thickness position (2) and position away from the center in [m](1). 

  

pl = 1;     % start index for the load vector 
failflag = 0; 
  
SIM.P(1) = 0; 
while failflag == 0 && pl <= size(impact,1) 
    pl = pl + 1; 
    Papp(pl) = tar.K_b*wc(pl); 
    fprintf(1, 'current load level: %1.4e N at % 1.4e m displacement\n',... 
        Papp(pl), wc(pl)) 
     
%     keyboard 

    % compute the stress-state in the undamaged laminate and analyse the beam for 
    % failure 
    [SIGPLY] = stress_state_pristine_funcV3(Papp(pl), stressflag); 
    [failflag, failinfo, FAIL] = fail_analysisV2(SIGPLY, alpha(pl)); 
     
    % save Papp 
    SIM.P(pl) = Papp(pl); 
end 
  
  
%% 2nd leg - until the end of impact 

fprintf(1, 'switching from 1st to 2nd leg\n') 
  
% prep "failinfo" for LEFM_tool 

dam.delams = [failinfo(:,1) failinfo(:,2) zeros(size(failinfo,1),1)]; 
  
while pl <= size(impact,1) 
    tempdelams = dam.delams; 
     
    % because now damage has been initialized an updated force has to be determined 
    Papp(pl) = Pupdate_funcV1(wc(pl), sim.contact); 
     
    fprintf(1, '\ncurrent load level: %1.4e N at %1.4e m displacement\n',... 
        Papp(pl), wc(pl)) 
        
    %------------------------ call LEFM_tool ---------------------------------------% 
    [Papp(pl)] = LEFM_toolV3(Papp(pl), wc(pl), sim.contact); 
     
     % save G, SIF, G_k, and length to a structure 
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    [~,temp] = sort(dam.delams(:,2), 'ascend'); 
    for dl = 1:size(dam.delams,1) 
        intnum = round(dam.delams(temp(dl),2)/tar.E0(7)); 
        SIM.at{intnum}(pl) = dam.delams(temp(dl),1); 
        SIM.Gt{intnum}(pl) = dam.G(temp(dl)); 
        SIM.SIFt{intnum}(1:2,pl) = dam.SIF(temp(dl), 1:2); 
        SIM.Gkt{intnum}(pl) = dam.SIF(temp(dl),5); 
    end 
     
    % check if any of the delaminations has reached the boundary of the beam 
    if max(dam.delams(:,1)) >= tar.L/2 
        fprintf(1, 'laminate failed prematurely!!\n') 
        break 
    end 
     
    %% Stress Update  

    % compute the new stress-state and analyse for failure  
    [SIGPLY] = stress_state_damaged_funcV1(Papp(pl), stressflag); 
    [failflag, failinfo, FAIL] = fail_analysisV2(SIGPLY, alpha(pl)); 
         
    %% growth update 

    % if we have growth than the newly grown delamination should overwrite the 
    % failinfo line.  
     
    for dl = 1:size(failinfo,1) 
        % check whether dam.delams needs updating. Either it is not growing, or the 
        % failure predicition has progressed in terms of radial value 
        % first find the corresponding line in failinfo 
        temp1 = find(dam.delams(:,2) == failinfo(dl,2)); 
        if isempty(temp1) 
            % new entry for dam.delams 
            fprintf(1,'new delamination at interface %i is added to "delams".\n',... 
                round(failinfo(dl,2)/tar.E0(7))) 
            dam.delams(end+1,:) = [failinfo(dl,1) failinfo(dl,2) failinfo(dl,3)]; 
        else 
            % this interface already exists in delams. Choose whether it should be 
            % "updated" in terms of radial distance (update = 1) or left until it  
            % will grow (update = 0). 
             
            switch sim.update 
                case 0 
                    fprintf(1, 'no update!\n') 
                     
                case 1 
                     
                    % Either it is not growing, or the failure predicition has  
                    % progressed in terms of radial value 
                    if dam.delams(temp1,3)==0 && failinfo(dl,1)<=dam.delams(temp1,1) 
                        fprintf(1,'no changes to "delams".\n') 
                    elseif dam.delams(temp1,3) == 1; 
                        fprintf(1,'delamination is growing. no input from failinfo.\n') 
                    else 
                        fprintf(1,... 
                            '"delams" will be adjusted with information from failinfo.\n') 
                        dam.delams(temp1,1) = failinfo(dl,1); 
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                    end 
            end 
        end 
    end 
%     keyboard 

     
    % save Papp 
    SIM.P(pl) = Papp(pl); 
     
    % update loop variables 
    pl = pl + 1; 
     
    % save SIM structure to mat file 
    save(filename, '-struct', 'SIM') 
  
end 
  
if wc(pl-1) == max(wc) 
    fprintf(1, 'max displacment of %1.4e m reached. Simulation stopped. \n', max(wc)) 
end 
 
 
function [K,EngCst,As] = ABDmat(E0,seq, orient, flag) 
% EO - the ply properties of the system 

% seq - stacking sequence in degrees 

% orient - reference orientation in axisymmetric problems 

% flag - switch between cartesian(0) and axisymmetyric(1) 

% returns K: A,B,D and Dred matrix 

% returns EngCst: Engineering constants taken from Christos' book 

  

%% compute the z-vector 

z = zvector(E0(7), length(seq)); 
h = length(seq)*E0(7); 
%% write stiffness matrix for orthotropic plane stress layer 

Q_xx = E0(1) / (1 - E0(4)^2 * E0(2)/E0(1)); 
Q_yy = E0(2) / (1 - E0(4)^2 * E0(2)/E0(1)); 
Q_xy = E0(4) * E0(2) / (1 - E0(4)^2 * E0(2)/E0(1)); 
Q_ss = E0(3); 
Q_ss1 = E0(3);  % unless I get other values for G23, G13 
Q_ss2 = E0(3); 
  
%% Determining of the ABD matrices 

  

% depending on which approach has been used... 

switch flag 
    case 0 
    % case 0 represents the standard cartesian version taken from Christos; 
    % book 
     
        % initialize ABD matrix 
        As = zeros(2,2); 
        A = zeros(3,3); 
        B = zeros(3,3); 
        D = zeros(3,3); 
         
        for k = 1:length(seq) 
  
            m = cosd(seq(k)); 
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            n = sind(seq(k)); 
  
            %transformed Stiffness matrix, approach from Kassapoglou's book 
            Q(1,1) = (m^4 * Q_xx) + (n^4 * Q_yy) + (2 * m^2 * n^2 * Q_xy) +... 
                (4 * m^2 * n^2 * Q_ss); 
            Q(2,2) = (n^4 * Q_xx) + (m^4 * Q_yy) + (2 * m^2 * n^2 * Q_xy) +... 
                (4 * m^2 * n^2 * Q_ss); 
            Q(1,2) = (m^2 * n^2 * Q_xx) + (m^2 * n^2 * Q_yy) + (m^4 + n^4) * Q_xy... 
                - (4 * m^2 * n^2 * Q_ss); 
            Q(3,3) = (m^2 * n^2 * Q_xx) + (m^2 * n^2 * Q_yy) -... 
                (2 * m^2 * n^2 * Q_xy) + (m^2 - n^2)^2 * Q_ss; 
            Q(1,3) = (m^3 * n * Q_xx) - (m * n^3 * Q_yy) + (m*n^3 - m^3*n) *... 
                Q_xy + 2 * (m*n^3 - m^3*n) * Q_ss; 
            Q(2,3) = (m * n^3 * Q_xx) - (m^3 * n * Q_yy) + (m^3*n - m*n^3) *... 
                Q_xy + 2 * (m^3*n - m*n^3) * Q_ss; 
            Q(2,1) = Q(1,2); 
            Q(3,1) = Q(1,3); 
            Q(3,2) = Q(2,3); 
            % transverse shear stiffnesses, 
            Q(4,4) = Q_ss1*m^2 + Q_ss2*n^2;                
            Q(4,5) = (Q_ss1-Q_ss2)*m*n; 
            Q(5,5) = Q_ss1*n^2 + Q_ss2*m^2; 
            Q(5,4) = Q(4,5); 
             
            % writing the ABD matrix 
            for i = 1:3 
                for j = 1:3 
                    A(i,j) = A(i,j) + Q(i,j)*(z(k+1) - z(k)); 
                    B(i,j) = B(i,j) + 0.5 * Q(i,j)*(z(k+1)^2 - z(k)^2); 
                    D(i,j) = D(i,j) + 1/3 * Q(i,j)*(z(k+1)^3 - z(k)^3); 
                end 
            end 
            for i = 4:5 
                for j = 4:5 
                    As(i-3,j-3) = As(i-3,j-3) + Q(i,j)*(z(k+1) - z(k)); 
                end 
            end 
        end 
         
        % collecting everything 
        Dred = D - B*inv(A)*B; 
        K = [A, B; D, Dred]; 
         
        % only for symmetric layups 
        alpha = inv(A); 
        beta = zeros(3); 
        delta = inv(D); 
  
        % Engineering constants 
        EngCst(1,1) = 1 / (h * alpha(1,1));          %E1m 
        EngCst(1,2) = 1 / (h * alpha(2,2));          %E2m 
        EngCst(2,1) = 12 / (h^3 * delta(1,1));       %E1b 
        EngCst(2,2) = 12 / (h^3 * delta(2,2));       %E2b 
        EngCst(3,1) = 1 / (h * alpha(3,3));          %G12m 
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        EngCst(3,2) = 12 / (h^3 * delta(3,3));       %G12b 
        EngCst(4,1) = -alpha(1,2) / alpha(2,2);      %nu12m 
        EngCst(4,2) = -alpha(1,2) / alpha(1,1);      %nu21m 
        EngCst(5,1) = -delta(1,2) / delta(1,1);      %nu12b 
        EngCst(5,2) = -delta(1,2) / delta(2,2);      %nu21b 
  

         
    case 1 
    % case 1 uses the invariants and is used here for the axisymmetric 
    % approach 
     
        % initialize ABD matrix 
        A = zeros(2,2); 
        B = zeros(2,2); 
        D = zeros(2,2); 
         
        % Determining the invariants 
        U(1) = (3*Q_xx + 3*Q_yy + 2*Q_xy + 4*Q_ss)/8; 
        U(2) = (Q_xx - Q_yy)/2; 
        U(3) = (Q_xx + Q_yy - 2*Q_xy - 4*Q_ss)/8; 
        U(4) = (Q_xx + Q_yy + 6*Q_xy - 4*Q_ss)/8; 
        U(5) = (Q_xx + Q_yy - 2*Q_xy + 4*Q_ss)/8; 
         
        for k = 1:length(seq) 
            % determine the correct angle theta  
            if orient > seq(k) 
                theta = orient-seq(k); 
            else 
                theta = seq(k)-orient; 
            end 
             
            m1 = cosd(2*theta); 
            m2 = cosd(4*theta); 
            n1 = sind(2*theta); 
            n2 = sind(4*theta); 
         
            Q(1,1) = U(1) + U(2)*m1 + U(3)*m2; 
            Q(1,2) = U(4) - U(3)*m2; 
            Q(2,2) = U(1) - U(2)*m1 + U(3)*m2; 
            Q(2,1) = Q(1,2); 
  
            for i = 1:2 
                for j = 1:2 
                    A(i,j) = A(i,j) + Q(i,j)*(z(k+1) - z(k)); 
                    B(i,j) = B(i,j) + 0.5 * Q(i,j)*(z(k+1)^2 - z(k)^2); 
                    D(i,j) = D(i,j) + 1/3 * Q(i,j)*(z(k+1)^3 - z(k)^3); 
                end 
            end 
        end    
         
        % collecting everything 
        Dred = D - B*inv(A)*B; 
        K = [A, B; D, Dred]; 
        EngCst = []; 
         
end 
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end 
  
function [z] = zvector(t_ply, ne) 
  
    if mod(ne,2) == 0           %check for even number of plies 
    %     display('even') 
        for j = 1:ne+1 
            if (j <(ne+1)/2) 
                z(j,1) = -(ne/2-j+1)* t_ply;  
            end 
            if (j==(ne+1)/2) 
                z(j,1)=0;         
            end 
            if (j >(ne+1)/2) 
                z(j,1) = -(ne/2-j+1)* t_ply;    
            end 
        end 
    else 
    %     display('odd') 
        for j = 1:ne+1 
            if (j <=(ne+1)/2) 
                z(j,1) = (-((ne+1)/2-j+1) + 0.5)* t_ply;  
            end 
  
            if (j >=(ne+1)/2) 
                z(j,1) = -((ne+1)/2-j+1 - 0.5)* t_ply;    
            end 
        end 
    end 
end 
 
 
%% -------------------------- input_funcV2.m ------------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This fucntion serves as input file for the simulation of the impact. The user has  

% to give as input the following items:                                              

% 

% impactor: 

% - radius of the sphere, imp.R [m] 

% - Young's modulus, imp.E [N/m^2] 

% - Poisson ratio, imp.nu [-] 

% - mass, imp.M [kg] 

% - velocity, imp.v0 [m/sec] 

% 

% target: 

% - density of cured material, tar.rho [kg/m^3] 

% - basic ply properties, tar.E0 [1x7] whereby: 

%     * E0(1-3): Young's modulus in fibre and transverse direction and shear modulus, 

%     respectively [N/m^2] 

%     * E0(4-6): Poisson ratio in 12, 21, and 13 direction, respectively [-] 

%     * E0(7): cured ply thickness [m] 

% - critical fracture toughness, tar.Gcr [Nm^(-3/2)] 

% - beam length, tar.L [m] 

% - beam width, tar.w [m] 

% - stacking sequence, lam_input 

% - boundary conditions, tar.BC (0 -> simply supported, 1 -> clamped) 
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% 

% Additionally, the following parameters are being computed 

% - transversely isotropic stiffnesses, tar.Etransiso [1x6] whereby: 

%     * Etransiso(1): Young's modulus in r-direction [N/m^2] 

%     * Etransiso(2): Poisson ration in r_theta-direction [-] 

%     * Etransiso(3): shear modulus in r_theta-direction [N/m^2] 

%     * Etransiso(4): Young's modulus in z-direction [N/m^2] 

%     * Etransiso(5): Poisson ratio in rz-direction [N/m^2] 

%     * Etransiso(6): shear modulus in rz-direction [N/m^2] 

% - heigh of the beam, tar.h [m] 

% - mass of the beam, tar.M [kg] 

%  

% The two structures "imp" and "tar" are made available to the rest of the programme 

% by declaring them globally. 

%-----------------------------------------------------------------------------------% 

% Author: J.J. Kurpierz 

% Version: V2 

% Date: 04.11.2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% start of function 

function [] = input_funcV2() 
  
%% global variable declaration 

global imp tar sim 
  
%% Input Parameters 

%---------------------------- Simulation input -------------------------------------% 

% input for the way fail_analysis is running 

% break (=1) or don't (=0) when first failure is detected 

sim.br = 0; 
% how to incorporate singular stress field: 1: deepest embedded, 2: longest, 3: all 

sim.SIF = 3; 
% update (=1) dam.delams or not (=0) 

sim.update = 1; 
% contact: 0: unconstrained, 1: constrained 

sim.contact = 0; 
%---------------------------- Impactor ---------------------------------------------% 

% stainless hardened steel 17-4 PH, H900, taken from Martin's experiment 

imp.R = 0.008;                                  % impactor Radius, [m] 
imp.E = 197*1e9;                                % impactor E-modulus [N/m^2] 
imp.nu = 0.272;                                 % impactor Poisson ratio [-] 
imp.M = 5.44;                                   % impactor mass [kg] 
imp.Ei = 15;                                    % incident impact energy 
imp.v0 = sqrt(2*imp.Ei/imp.M);                  % impactor velocity [m/s] 
  

%---------------------------- target -----------------------------------------------% 

tar.rho = 1590;                                 % plate density, [kg/m^3] 
  

% properties for IM7/8551-7 taken from HexPly, complemented where necessary with  

% AS4 data from Lopes  

tar.E0(1)=144.8*1e9;                            % E-mod in fibre direction [Pa] 
tar.E0(2)=8.3*1e9;                              % E-mod in transverse direction [Pa] 
tar.E0(3)=5.8*1e9;                              % inplane shear mod [Pa] 
tar.E0(4)=0.32;                                 % poisson ratio 12 [-], nu_lt 
tar.E0(5)=tar.E0(4)*tar.E0(2)/tar.E0(1);        % poisson ratio in 21, nu_tl 
tar.E0(6)=0.3487;                               % poisson ratio in 13, nu_tt 
tar.E0(7)=0.19E-3;                              % ply thickness 
  

% fracture toughness for GII mode for IM7/8552 (O'Brien), [Nm^(-3/2)] 

tar.Gcr = 1138;          
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% layup input. If the last digit is equal to "1", then the laminate is mirrored. 

% Otherise a "0" has to be placed at the last entry. 

LAM{1} = [45 90 -45 0 45 90 -45 0 45 90 -45 0 1]; 
LAM{2} = [45 45 45 90 90 90 -45 -45 -45 0 0 0 1]; 
LAM{3} = [30 60 90 -60 -30 0 30 60 90 -60 -30 0 1]; 
LAM{4} = [30 60 90 -30 -60 0 30 60 90 -30 -60 0 1]; 
LAM{5} = [45 90 -45 90 -45 90 -45 0 45 0 45 0 1]; 
LAM{6} = [45 0 -45 0 -45 0 -45 90 45 90 45 90 1]; 
LAM{7} = [45 45 90 90 -45 -45 0 0 45 45 90 90 -45 -45 0 0 1]; 
LAM{8} = [-45 0 45 90 -45 0 45 90 -45 0 45 90 1]; 
LAM{9} = [-45 -45 0 0 45 45 90 90 -45 -45 0 0 45 45 90 90 1]; 
% choose the laminate to be analyzed 

sim.lam = 9;    
    
lam_input = LAM{sim.lam}; 
  
if lam_input(end) == 1 
    tar.seq = [lam_input(1:end-1) lam_input(end-1:-1:1)]; 
else 
    tar.seq = lam_input(1:end-1); 
end 
  
% geometry 

% tar.L = 0.127;                                          % beam length, [m] 

% tar.w = 0.0762;                                          % beam width, [m] 

  

% rotated geometry 

tar.L = 0.0762;                                          % beam length, [m] 
tar.w = 0.127;                                          % beam width, [m] 
  

% boundary condtions 

tar.BC = 0; 
  
%% computed values 

tar.h = length(tar.seq)*tar.E0(7);                      % plate thickness, [m] 
tar.M = tar.rho*tar.L*tar.h*tar.w;                      % beam mass, [m] 
% Engineering Constants according to Kasapoglou 

[~, EngCst] = ABDmat(tar.E0, tar.seq, 0, 0); 
  
% according to Abrate 

tar.Etransiso(1) = (EngCst(1,1)+EngCst(1,2))/2;   % E-mod in radial direction [N/m^2] 
tar.Etransiso(2) = (EngCst(4,1)+EngCst(4,2))/2;   % in plane Poisson ratio [-] 
tar.Etransiso(3) = EngCst(3,1); 
  
% Engineering Constants for axisymmetric problems according to Suemasu 

del = 1 - 2*tar.E0(5)*tar.E0(4)*tar.E0(5) - 2*tar.E0(6)*tar.E0(4) - tar.E0(6)^2; 
A11 = tar.E0(1)*(1-tar.E0(6)^2)/del; 
A22 = tar.E0(2)*(1-tar.E0(4)*tar.E0(5))/del; 
A12 = tar.E0(2)*tar.E0(4)*(1+tar.E0(6))/del; 
A23 = tar.E0(2)*(tar.E0(6)+tar.E0(4)*tar.E0(5))/del; 
  
% E-mod in z-direction [N/m^2] 

tar.Etransiso(4) =  A22 - (A12 + A23)^2/(A11+A22+2*A12); 
% out-of-plane Poisson ratio [-] 
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tar.Etransiso(5) = (A12 + A23)/(A11+A22+2*A12); 
% shear mod in z direction [N/m^2] 

tar.Etransiso(6) = 2*(1/tar.E0(3)+1/((1-tar.E0(6))*tar.E0(3)))^(-1);         
  
end 
 
 
%% -------------------------- impact_load_funcV3.m ------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This module determines the load history from the impact event for an undamaged  

% laminate and returns the laod and indentation vector to the master file. 

% It is based on the paper from Pang et al (1991) and is valid for thin plates, small 

% deflection, i.e. Ks = 0, Km = 0.  

%-----------------------------------------------------------------------------------% 

% Input:  

% no input from outside is neccessary as long as the two structures "imp" and "tar" 

% are defined globally previously. 

%-----------------------------------------------------------------------------------% 

% Output: 

% - matrix "impact" (dt,2)  

%     * impact(:,1) = impact load P(t) 

%     * impact(:,2) = indendation alpha(t) 

%-----------------------------------------------------------------------------------% 

% Author: J.J. Kurpierz 

% Version: V1 

% Date: 13.07.2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of function 

function [impact] = impact_funcV4()   
  
%% variable decleration 

global imp tar 
  
Er = tar.Etransiso(1); 
Ez = tar.Etransiso(4); 
Grz = tar.Etransiso(6); 
nurth = tar.Etransiso(2); 
nurz = tar.Etransiso(5); 
  
%% Preliminary calculations 

%-----------------------------------------------------------------------------------% 

% compute contact stiffness according to Greszczuk 

del = 1-nurth - 2*nurz^2; 
Crr = Er*(1-nurz^2)/((1+nurth)*del); 
Czz = Ez*(1-nurth)/del; 
Crz = Er*nurz/del; 
  
% anisotropic (target) part 

tar.K = sqrt(Crr)*((sqrt(Czz*Crr)+Grz)^2-(Crz+Grz)^2)^0.5 /... 
    (2*pi*sqrt(Grz)*(Czz*Crr-Crz^2)); 
  
% isotropic impactor part 

imp.K = (1-imp.nu^2)/(pi*imp.E); 
  
% contact stiffness parameter 

K_con = 4*sqrt(imp.R) / (3*pi*(imp.K+tar.K)); 
  
%-----------------------------------------------------------------------------------% 

% equivalent mass, based on Swanson(1992),  
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if tar.BC == 0 
    m_eq = 0.486 * tar.M; 
else 
    m_eq = 0.371 * tar.M; 
end 
         
% equivalent stiffness based on laminated beam theory 

[~, EngCst, ~] = ABDmat(tar.E0, tar.seq, 0, 0); 
Eb = EngCst(2,1); % using E1_b 
% moment of inertia of the beam 

I = 1/12*tar.h^3*tar.w; 
% equivalent stiffness for either simply supported or clamped beam 

if tar.BC == 0 
    tar.K_b = 48*Eb*I/tar.L^3; 
else 
    tar.K_b = 192*Eb*I/tar.L^3; 
end 
K_eq = tar.K_b; 
  
%% iterative solution of equation 3.3.11 

% initial value for the indendation [m] 

alpha_init = 0;                              
options = optimset('Display', 'off'); 
alpha_m = fsolve(@(x) imp.v0^2*imp.M - K_con * x^(5/2) - K_con^2/K_eq*... 
                      (1+m_eq/imp.M) * x^3 + 2/3*K_con^3*m_eq/... 
                      (imp.v0^2*imp.M^2*K_eq) * x^(11/2), alpha_init, options); 
  
%% computation of impact histories 

% max force during impact [N] based on Hertzian contact theory 

P_m = K_con * alpha_m^(3/2);   
% time duration [sec] to reach max force 

t_m = imp.v0*pi*imp.M / (2*P_m);                   
% duration of the impact 

dt = 500; 
t_vec = 0:t_m/dt:t_m; 
% force, indendation and displacment history 

P_t = P_m * sin(pi/(2*t_m)*t_vec); 
alpha_t = alpha_m * sin(pi/(2*t_m)*t_vec).^(2/3); 
wc_t = 4*P_m*t_m^2/(pi^2*imp.M)*sin(pi/(2*t_m)*t_vec)+... 
    (imp.v0-2*P_m*t_m/(pi*imp.M))*t_vec - alpha_m*sin(pi/(2*t_m)*t_vec).^(2/3); 
%% function output 

impact = [P_t' , alpha_t', wc_t', (t_vec/t_m)']; 
  
end 
 
 
%% -------------------------- stress_state_pristine_funcV3.m --------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This module determines the stress state for a given impact load input. To this end 

% it computes the stresses in the entire laminate due to bending and subsequently 

% computes the transverse stresses resulting from the bending. 

% Furthermore the contact stresses due to impact are computed by one of the various 

% solution techniques available.  

% For the bending solution the laminated beam theory has been used given in Reddy. 

%-----------------------------------------------------------------------------------% 

% Input: 
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% - current load level, Pt 

% - stressflag, indicates whether (1) or not (0) the finite-thickness approach is  

% used 

%-----------------------------------------------------------------------------------% 

% Output: 

% - FAIL, matrix indicating at each interface for every step in radial direction 

% whether or not the material failed (0, 1). To be used as input for the delamination 

% module 

%-----------------------------------------------------------------------------------% 

% Author: J.J. Kurpierz 

% Date: 05.11.2012 

% Version: V3 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of the function 

function [SIGPLY] = stress_state_pristine_funcV3(Pt, stressflag) 
  
%% declare variables 

global tar resx 
  
%% initial setup 

% resolution in x direction (equivalent to r) 

resx = round(5*tar.L/tar.E0(7)); 
  
% resolution in z direction ( a value of 1 means that only the interfaces are being 

% evaluated) 

resz = 1; 
  
%% stress computation 

%---------------------------- flexural stresses ------------------------------------% 

% D-matrix from the input file 

[K,~] = ABDmat(tar.E0, tar.seq, 0, 0); 
D = K(4:6,1:3); 
d = inv(D); 
if tar.BC == 0 
    Mr = 0; 
else 
    Mr = -1/8*Pt*tar.L; 
end 
SIGB = flex_sigV2(Pt, d, Mr, resx, resz); 
  
%---------------------------- contact stresses -------------------------------------% 

SIGC = contact_sigV1(Pt, stressflag, resx, resz); 
  
SIGPLY.B = SIGB; 
SIGPLY.C = SIGC; 
  
%---------------------------- transformation to ply coordinates --------------------% 

% The global stress components can now be added together and then transformed to 

% yield the stress components in the ply coordinate system. From the bending stress 

% analysis we get two values per interface. So the ply based matrices should also 

% have two values per interface, which then will be passed to the failure criterion. 

% Add flexural and contact stresses (at the same time duplicate the transverse stress 

% components) 

  

for rl = 1:resx 
    for k = 1:length(tar.seq)-1 
        % define global stress vector 
        % upper ply first 
        SIGglobu = [SIGB.XX(2*(k-1)+1,rl) + SIGC.XX(k,rl); 
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                    SIGB.YY(2*(k-1)+1,rl) + SIGC.YY(k,rl); 
                    SIGC.ZZ(k,rl); 
                    SIGB.XZ(k,rl) + SIGC.XZ(k,rl); 
                    SIGB.YZ(k,rl); 
                    SIGB.XY(2*(k-1)+1,rl)]; 
         
        % lower ply first 
        SIGglobl = [SIGB.XX(2*(k-1)+2,rl) + SIGC.XX(k,rl); 
                    SIGB.YY(2*(k-1)+2,rl) + SIGC.YY(k,rl); 
                    SIGC.ZZ(k,rl); 
                    SIGB.XZ(k,rl) + SIGC.XZ(k,rl); 
                    SIGB.YZ(k,rl); 
                    SIGB.XY(2*(k-1)+2,rl)]; 
         
        % apply transformation 
        % transformation matrix (see equation 3.4.10) 
        mu = cosd(tar.seq(k)); 
        nu = sind(tar.seq(k)); 
        TRANSU = [mu^2 nu^2 0 0 0 2*mu*nu; 
                 nu^2 mu^2 0 0 0 -2*mu*nu; 
                 0 0 1 0 0 0; 
                 0 0 0 mu -nu 0; 
                 0 0 0 nu mu 0; 
                 -nu*mu mu*nu 0 0 0 mu^2-nu^2]; 
        SIGlocu = TRANSU*SIGglobu; 
        ml = cosd(tar.seq(k+1)); 
        nl = sind(tar.seq(k+1)); 
        TRANSL = [ml^2 nl^2 0 0 0 2*ml*nl; 
                 nl^2 ml^2 0 0 0 -2*ml*nl; 
                 0 0 1 0 0 0; 
                 0 0 0 ml -nl 0; 
                 0 0 0 nl ml 0; 
                 -nl*ml ml*nl 0 0 0 ml^2-nl^2]; 
        SIGlocl = TRANSL*SIGglobl; 
         
        % reorganize into a structure with 4 matrices to be used by Failure criterion 
        SIGPLY.S1(2*(k-1)+1, rl) = SIGlocu(1); 
        SIGPLY.S3(2*(k-1)+1, rl) = SIGlocu(3); 
        SIGPLY.S4(2*(k-1)+1, rl) = SIGlocu(4); 
        SIGPLY.S5(2*(k-1)+1, rl) = SIGlocu(5); 
        SIGPLY.S1(2*(k-1)+2, rl) = SIGlocl(1); 
        SIGPLY.S3(2*(k-1)+2, rl) = SIGlocl(3); 
        SIGPLY.S4(2*(k-1)+2, rl) = SIGlocl(4); 
        SIGPLY.S5(2*(k-1)+2, rl) = SIGlocl(5); 
                         
    end 
end 
     
end 
 
%% -------------------------- contact_sigV1.m --------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This module computes the contact stresses in the impacted beam. There are two 

% possibilities. Either a fast assessment is desired in which case only the full 
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% analytical approach by Dahan&Zarka can be used. Otherwise the full solution based 

% on Cairns thesis will be used resulting in longer computation times. The variable 

% "stressflag" is used to activate the use of the latter. 

%-----------------------------------------------------------------------------------% 

% input: 

% - current load level, Pt [N] 

% - stressflag to indicate whether Cairns solution is computed as well [-] 

% - resolution in x direction, resx [-] 

% - resolution in z direction, resz [-] (if resz = 1 then we only look at the  

%-----------------------------------------------------------------------------------% 

% output: 

% - structure SIGC containing 4 fields 

%     * .xx (ni,resx) 

%     * .yy (ni,resx) 

%     * .zz (ni, resx) 

%     * .xz (ni, resx) 

%-----------------------------------------------------------------------------------% 

% author: J.J. Kurpierz 

% version: V1 

% date 05.11.2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of function 

function[SIGC] = contact_sigV1(Pt, stressflag, resx, resz) 
  
%% variable declaration 

global tar imp 
P = Pt; 
Er = tar.Etransiso(1); 
Ez = tar.Etransiso(4); 
Grz = tar.Etransiso(6); 
nurth = tar.Etransiso(2); 
nurz = tar.Etransiso(5); 
  
% Preliminaries taken from Lekhnitskii 

% half-space compliance matrix 

a11 = 1/Er; 
a12 = -nurth/Er; 
a13 = -nurz/Ez; 
a33 = 1/Ez; 
a44 = 1/Grz; 
  
% constants defined to simplify the expressions 

del = a11*a33-a13^2; 
a = a13*(a11-a12)/del; 
b = (a13*(a13+a44)-a12*a33)/del; 
c = (a13*(a11-a12) + a11*a44)/del; 
d = (a11^2 - a12^2)/del; 
  
s1 = sqrt((a+c+sqrt((a+c)^2-4*d))/(2*d)); 
s2 = sqrt((a+c-sqrt((a+c)^2-4*d))/(2*d)); 
  
% contact radius and pressure from Hertzian loading 

Rc = (3*pi/4*abs(P)*imp.R*(imp.K+tar.K))^(1/3); 
p0 = 3*P/(2*pi*Rc^2); 
  
%% switch between the different possibilities 

switch stressflag 
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case 0 % closed form solution, taken from Dahan and Zarka 
    % some definitions used later 
    p1 = 1-a*s1^2; 
    p2 = 1-a*s2^2; 
    q1 = (b-a*s2^2)*p1; 
    q2 = (b-a*s1^2)*p2; 
    nu = (b-1)*sqrt(d)/(a*c-d); 
    mu = (b-1)*(a+sqrt(d))/(a*c-d); 
    k1 = s1^2/((s2-s1)*sqrt(d)); 
    k2 = s2^2/((s2-s1)*sqrt(d)); 
    l1 = nu*s1^2*p2/(s2-s1); 
    l2 = nu*s2^2*p1/(s2-s1); 
    % Rp is the "circular" plate which is affected locally 
    Rp = 15*Rc; 
    z = 0:tar.E0(7)/resz:tar.h; 
  
    % initialization 
    SIG_RR = zeros(length(z)-2,resx); 
    SIG_TT = zeros(length(z)-2,resx); 
    SIG_ZZ = zeros(length(z)-2,resx); 
    SIG_RZ = zeros(length(z)-2,resx); 
  
    r = 0; 
    rl = 1; 
    while r < Rp 
        % the loop over the thickness starts at the first interface and stops at the 
        % last 
        for zl = 2:length(z)-1      
            S(1) = s1; 
            S(2) = s2; 
            for k = 1:2 
                %gamma^4 
                gamma(k) = 1/Rc^4*(r^2-Rc^2+S(k)^2*z(zl)^2)^2 ... 
                    + 4*S(k)^2*z(zl)^2/Rc^2; 
                %alpha^2 
                alpha(k) = 1/2*(r^2+S(k)^2*z(zl)^2-Rc^2+... 
                           Rc^2*sqrt(gamma(k)));   
                %beta 
                beta(k) = -S(k)*z(zl)*Rc/sqrt(alpha(k)); 
                % remaining quantities for the computation 
                S1(k) = atan((Rc-beta(k))/(sqrt(alpha(k))+S(k)*z(zl))); 
                S1p(k) = (beta(k)+Rc)/r; 
                T1p(k) = (sqrt(alpha(k))-S(k)*z(zl))/r; 
                D2(k) = 1/(2*Rc)*(r*S1(k)-S(k)*z(zl)*S1p(k)-Rc*T1p(k)); 
                C2(k) = 1-1/Rc*(r*S1p(k) + S(k)*z(zl)*S1(k)); 
                D3(k) = 1/(3*Rc)*(Rc^2-r^2+S(k)^2*z(zl)^2/2)*S1p(k)+... 
                    S(k)*z(zl)/6*T1p(k)-r*S(k)*z(zl)/(2*Rc)*S1(k)+r/3; 
            end 
  
            if rl == 1 
                SIG_RZ(zl-1,rl) = 0; 
                SIG_ZZ(zl-1,rl) = -p0*(1 + S(1)*S(2)/(S(1)-S(2))*z(zl)/Rc*... 
                                (atan(Rc/(S(1)*z(zl)))... 
                                -atan(Rc/(S(2)*z(zl))))); 
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                SIG_RR(zl-1,rl) = p0*(mu/2-1/sqrt(d)-z(zl)/Rc*((k1-l1/2)*... 
                    atan(Rc/(S(1)*z(zl)))-(k2-l2/2)*atan(Rc/(S(2)*z(zl))))); 
                SIG_TT(zl-1,rl) =  SIG_RR(zl-1,rl);                
            else 
                SIG_RZ(zl-1,rl) = p0*(D2(1)-D2(2))/((s1-s2)*sqrt(d)); 
                SIG_ZZ(zl-1,rl) = p0*(S(2)*C2(1)-S(1)*C2(2))/(S(1)-S(2)); 
                SIG_RR(zl-1,rl) = p0*(-1/((S(1)-S(2))*sqrt(d))*(S(1)*C2(1)-... 
                    S(2)*C2(2))+nu/(r*(S(1)-S(2)))*(S(1)*p2*D3(1)-S(2)*p1*D3(2))); 
                SIG_TT(zl-1,rl) = p0*(sqrt(d)/((S(1)-S(2))*(a*c-d))*(S(1)*q1*C2(1)... 
                   -S(2)*q2*C2(2))-nu/(r*(S(1)-S(2)))*(S(1)*p2*D3(1)-S(2)*p1*D3(2))); 
            end 
        end 
        % loop variable update 
        rl = rl + 1; 
        r = r+tar.L/2/resx; 
    end 
     
    SIGC.XX = SIG_RR; 
    SIGC.YY = SIG_TT; 
    SIGC.XZ = SIG_RZ; 
    SIGC.ZZ = SIG_ZZ; 
  
case 1 % solution taken from Cairns 
  

    % computation set up 
    Rp = 20*Rc; 
    z = -tar.h/2:tar.E0(7)/resz:tar.h/2; 
%     % computation location for r 

%     dr = 5;                     % discretization in r direction within Rp 

%     r = 0:Rc/dr:Rp; 

  

    % initialization 
    SIG_RR = zeros(length(z)-1,resx); 
    SIG_TT = zeros(length(z)-1,resx); 
    SIG_ZZ = zeros(length(z)-1,resx); 
    SIG_RZ = zeros(length(z)-1,resx); 
  
    % conditions at the impact surface 
    ra = 0; 
    ral = 1; 
    while ra <= Rc 
        SIG_ZZ_b(ral) = p0/Rc*(Rc^2-ra^2).^(1/2); 
        ral = ral + 1; 
        ra = ra + 0.5*tar.L/resx; 
    end 
    SIG_ZZ_b(ral:resx) = SIG_ZZ(ral:resx); 
     
    % max number of harmonics 
    kmax = 150;     
    r = 0; 
    rl = 1; 
    while r < Rp 
        
        for zi = 1:length(z)-1 
            k = 1; 
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            while SIG_ZZ(1,rl) <= SIG_ZZ_b(1,rl) && k <= kmax 
  
                % compute the roots of the zeroth order bessel function 
                mue = zerobess('J', 0,k); 
                wm = mue(k)/Rp; 
  
                % load vector definition for Hertzian loading 
                betam = -3*P*(cos(Rc*wm)*wm*Rc - sin(Rc*wm)) / ... 
                    (besselj(1,mue(k))^2*Rp^2*Rc^3*wm^3*pi);      
                vec = [betam 0 0 0]; 
  
                mat(1,1) = (-c*s1+d*s1^3)*exp(-wm*s1*tar.h/2); 
                mat(1,2) = (-c*s2+d*s2^3)*exp(-wm*s2*tar.h/2); 
                mat(1,3) = (c*s1-d*s1^3)*exp(wm*s1*tar.h/2); 
                mat(1,4) = (c*s2-d*s2^3)*exp(wm*s2*tar.h/2); 
                mat(2,1) = (-c*s1+d*s1^3)*exp(wm*s1*tar.h/2); 
                mat(2,2) = (-c*s2+d*s2^3)*exp(wm*s2*tar.h/2); 
                mat(2,3) = (c*s1-d*s1^3)*exp(-wm*s1*tar.h/2); 
                mat(2,4) = (c*s2-d*s2^3)*exp(-wm*s2*tar.h/2);    
                mat(3,1) = (1-a*s1^2)*exp(-wm*s1*tar.h/2); 
                mat(3,2) = (1-a*s2^2)*exp(-wm*s2*tar.h/2); 
                mat(3,3) = (1-a*s1^2)*exp(wm*s1*tar.h/2); 
                mat(3,4) = (1-a*s2^2)*exp(wm*s2*tar.h/2); 
                mat(4,1) = (1-a*s1^2)*exp(wm*s1*tar.h/2); 
                mat(4,2) = (1-a*s2^2)*exp(wm*s2*tar.h/2); 
                mat(4,3) = (1-a*s1^2)*exp(-wm*s1*tar.h/2); 
                mat(4,4) = (1-a*s2^2)*exp(-wm*s2*tar.h/2); 
  
                Co = wm^3*mat\vec'; 
  
                %% compute partial derivatives 

                % function f(z) 
                Fz = Co(1)*exp(s1*wm*z(zi)) + Co(2)*exp(s2*wm*z(zi)) + ... 
                    Co(3)*exp(-s1*wm*z(zi)) + Co(4)*exp(-s2*wm*z(zi));         
                % first der. wrt z of f(z) 
                Fp = s1*wm*Co(1)*exp(s1*wm*z(zi)) +...  
                     s2*wm*Co(2)*exp(s2*wm*z(zi)) -... 
                     s1*wm*Co(3)*exp(-s1*wm*z(zi)) -... 
                     s2*wm*Co(4)*exp(-s2*wm*z(zi));    
                % second der. wrt z of f(z) 
                Fd = s1^2*wm^2*Co(1)*exp(s1*wm*z(zi)) +... 
                     s2^2*wm^2*Co(2)*exp(s2*wm*z(zi)) +... 
                     s1^2*wm^2*Co(3)*exp(-s1*wm*z(zi)) +... 
                     s2^2*wm^2*Co(4)*exp(-s2*wm*z(zi)); 
                % third der. wrt z of f(z) 
                Ft = s1^3*wm^3*Co(1)*exp(s1*wm*z(zi)) +... 
                     s2^3*wm^3*Co(2)*exp(s2*wm*z(zi)) -... 
                     s1^3*wm^3*Co(3)*exp(-s1*wm*z(zi)) -... 
                     s2^3*wm^3*Co(4)*exp(-s2*wm*z(zi));   
  
                % ----------- stress components ------------------------------------% 
                SIG_ZZ(zi,rl)=SIG_ZZ(zi,rl)-.... 
                        c*wm^2*besselj(0,wm*r)*(Fp)+d*besselj(0,wm*r)*(Ft); 
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                % due to the fact that one of the terms in the expression for SIG_RR 
                % and SIG_TT contains 1/r, those components are not defined at r=0. 
                % Therefore a limit process has to be carried out. In the limit for r 
                % -> 0 besselj(0,wm*0) = 1 and besselj(1,wm*0) = wm/2. 
                if r == 0 
                    SIG_TT(zi, rl) = SIG_TT(zi,rl)+(b*wm^2*Fp-a*Ft)+(1-b)*wm^2/2*Fp; 
                     
                    SIG_RR(zi, rl) = SIG_RR(zi,rl)+(wm^2*Fp-a*Ft)+(b-1)*wm^2/2*Fp; 
                else 
                    SIG_TT(zi, rl) = SIG_TT(zi,rl)+besselj(0,wm*r)*... 
                        (b*wm^2*Fp-a*Ft)+(1-b)*wm*besselj(1,wm*r)/r*Fp; 
                 
                    SIG_RR(zi, rl) = SIG_RR(zi,rl)+... 
                        besselj(0,wm*r)*(wm^2*Fp-a*Ft)+(b-1)*wm*besselj(1,wm*r)/r*Fp; 
                end 
                 
                % check whether we have reached the critical sigma value 
                if zi == 1 && SIG_ZZ(1,rl)>SIG_ZZ_b(1,rl) 
                    kmax = k; 
                    SIG_ZZ(1,rl) = SIG_ZZ_b(1,rl); 
                    break 
                end 
                 
                if zi == 1 
                    SIG_RZ(zi, rl) = 0; 
                else 
                SIG_RZ(zi, rl)=SIG_RZ(zi,rl)+... 
                    wm^3*besselj(1, wm*r)*(Fz)-a*wm*besselj(1, wm*r)*(Fd); 
                end 
  
                % update loop variable 
                k = k + 1; 
  
            end 
  
        end 
        r = r + 0.5*tar.L/resx; 
        rl = rl + 1; 
  
    end 
     
    % store the results in the structure. A minus sign has to be included in order to 
    % define the stress components properly. Negative values indicate compression. 
    SIGC.XX = -SIG_RR(2:end,:); 
    SIGC.YY = -SIG_TT(2:end,:); 
    SIGC.XZ = -SIG_RZ(2:end,:); 
    SIGC.ZZ = -SIG_ZZ(2:end,:); 
     
end 
  
end 
 
 
%% -------------------------- flex_sigV1.m --------------------------------------- %% 

%-----------------------------------------------------------------------------------% 

% Module for the computation of the flexural stresses during the impact.  

%-----------------------------------------------------------------------------------% 
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% input: 

% - current load level, Pt [N] 

% - bending compliance matrix, d [Nm^-1] 

% - root moment, Mr [Nm] in case of a clamped beam 

% - resolution in x direction, resx [-] 

% - resolution in z direction, resz [-] (if resz = 1 then we only look at the  

% interfaces) 

%-----------------------------------------------------------------------------------% 

% output: 

% - structure SIGB containing 5 fields 

%     * .xx (2*ni,resx) 

%     * .yy (2*ni,resx) 

%     * .xy (2*ni, resx) 

%     * .xz (ni, resx) 

%     * .yz (ni, resx) 

%-----------------------------------------------------------------------------------% 

% author: J.J. Kurpierz 

% Version: V1 

% date: 05.11.2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of function 

function[SIGB] = flex_sigV2(Pt, d, Mr, resx, resz) 
  
%% variable declaration  

global tar 
% applied load on the plate 

% I have to come back to this wrt the sign of the applied force 

P = Pt; 
  
%% compute flexural stresses in the structure 

% compute the z coordiantes of the ply interfaces, starting at the top face 

z = flipud(zvector(tar.E0(7), length(tar.seq)));            
              
% x vector for beam model 

x = linspace(tar.L/2,0,resx); 
%-----------------------------------------------------------------------------------% 

% in-plane stresses per ply based on laminated beam bending theory (see Reddy) 

% this section computes the in-plane stresses due to bending for either simply  

% supported or clamped beams (both ends) 

  

% write stiffness matrix for orthotropic plane stress layer 

Q_xx = tar.E0(1) / (1 - tar.E0(4)^2 * tar.E0(2)/tar.E0(1)); 
Q_yy = tar.E0(2) / (1 - tar.E0(4)^2 * tar.E0(2)/tar.E0(1)); 
Q_xy = tar.E0(4) * tar.E0(2) / (1 - tar.E0(4)^2 * tar.E0(2)/tar.E0(1)); 
Q_ss = tar.E0(3); 
  
% stress component matrices 

SIGB.XX = []; 
SIGB.YY = []; 
SIGB.XY = []; 
SIGB.XZ = []; 
SIGB.YZ = []; 
  
% outer loop for the running x coordinate, from boundary to midspan 

for xl = 1:length(x)                % xl => x_loop             
  

    % internal bending moment distribution 
    M = Mr+P*x(xl)/2; 
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    dM = P/2; 
  
     
    % initialize the stress values per position x 
    sig_xx = []; 
    sig_yy = []; 
    sig_xy = []; 
    sig_xz = 0; 
    sig_yz = 0; 
  
    % loop through all plies 
    for k = 1:1:length(tar.seq) 
  
        % per ply we have a z-vector 
        z_ply = z(k)/tar.h:-tar.E0(7)/resz/tar.h:z(k+1)/tar.h; 
  
        % we need the stiffnes matrix Q_bar 
        m = cosd(tar.seq(k)); 
        n = sind(tar.seq(k)); 
  
        % transformed plane-stress reduced Stiffness matrix, approach from  
        % Kassapoglou's book 
        Q(1,1) = (m^4 * Q_xx) + (n^4 * Q_yy) + (2 * m^2 * n^2 * Q_xy)+... 
                 (4 * m^2 * n^2 * Q_ss); 
        Q(2,2) = (n^4 * Q_xx) + (m^4 * Q_yy) + (2 * m^2 * n^2 * Q_xy)+... 
                 (4 * m^2 * n^2 * Q_ss); 
        Q(1,2) = (m^2 * n^2 * Q_xx) + (m^2 * n^2 * Q_yy) + (m^4 + n^4)... 
                 * Q_xy - (4 * m^2 * n^2 * Q_ss); 
        Q(3,3) = (m^2 * n^2 * Q_xx) + (m^2 * n^2 * Q_yy) - ... 
                 (2 * m^2 * n^2 * Q_xy) + (m^2 - n^2)^2 * Q_ss; 
        Q(1,3) = (m^3 * n * Q_xx) - (m * n^3 * Q_yy) + (m*n^3 - m^3*n)... 
                  * Q_xy + 2 * (m*n^3 - m^3*n) * Q_ss; 
        Q(2,3) = (m * n^3 * Q_xx) - (m^3 * n * Q_yy) + (m^3*n - m*n^3)... 
                 * Q_xy + 2 * (m^3*n - m*n^3) * Q_ss; 
        Q(2,1) = Q(1,2); 
        Q(3,1) = Q(1,3); 
        Q(3,2) = Q(2,3); 
  
        %---------------------------------------------------------------------------% 
         
        % initialize stress values for each ply 
        sig_xx_k = []; 
        sig_yy_k = [];   
        sig_xy_k = [];   
         
        % computation of flexural stresses per ply 
        sig_xx_k = z_ply./tar.w*tar.h*M*(Q(1,1)*d(1,1)+Q(1,2)*d(1,2)+Q(1,3)*d(1,3)); 
        sig_yy_k = z_ply./tar.w*tar.h*M*(Q(1,2)*d(1,1)+Q(2,2)*d(1,2)+Q(2,3)*d(1,3)); 
        sig_xy_k = z_ply./tar.w*tar.h*M*(Q(1,3)*d(1,1)+Q(2,3)*d(1,2)+Q(3,3)*d(1,3)); 
         
%         % transform to ply coordinates 

%         SIG_lam_1 = [sig_k(1,:); sig_k(2,:); sig_k(3,:)]; 

%         % Transformation matrix 

%         T = [m^2 n^2 2*m*n; n^2 m^2 -2*m*n; -m*n m*n (m^2-n^2)];     

%         SIG_ply_1 = T*SIG_lam_1; 

  

        % store the computed values for the ply in a vector 
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        if k == 1 
            sig_xx = [sig_xx_k(end)]; 
            sig_yy = [sig_yy_k(end)]; 
            sig_xy = [sig_xy_k(end)]; 
        elseif k == length(tar.seq) 
            sig_xx = [sig_xx sig_xx_k(1)]; 
            sig_yy = [sig_yy sig_yy_k(1)]; 
            sig_xy = [sig_xy sig_xy_k(1)]; 
        else 
            sig_xx = [sig_xx sig_xx_k]; 
            sig_yy = [sig_yy sig_yy_k]; 
            sig_xy = [sig_xy sig_xy_k]; 
        end 
  
        %---------------------------------------------------------------------------% 
  

        % transverse stresses, integration 
        % initialising and updating of the integration constants 
        if k == 1 
            G = 0; 
            F = 0; 
        else 
            G = sig_xz(end); 
            F = sig_yz(end); 
        end 
  
        dsig_k_xx = dM/tar.w*(Q(1,1)*d(1,1)+Q(1,2)*d(1,2)+Q(1,3)*d(1,3)); 
        dsig_k_xy = dM/tar.w*(Q(1,3)*d(1,1)+Q(2,3)*d(1,2)+Q(3,3)*d(1,3)); 
  
        sig_xz = [sig_xz -dsig_k_xx*(z_ply(2:end).^2-z_ply(1)^2)*... 
                  tar.h^2/2 + G]; 
        sig_yz = [sig_yz -dsig_k_xy*(z_ply(2:end).^2-z_ply(1)^2)*... 
                  tar.h^2/2 + F]; 
        sig_zz = 0;  % dQ/dx is zero for a concentrated force 
  

    end 
  
    SIGB.XX(:,xl) = -sig_xx'; 
    SIGB.YY(:,xl) = -sig_yy'; 
    SIGB.XY(:,xl) = -sig_xy'; 
    SIGB.XZ(:,xl) = -sig_xz(2:end-1)'; 
    SIGB.YZ(:,xl) = -sig_yz(2:end-1)'; 
  
end 
  
end 
 
 
function[SIGS] = sing_sigV1(resx, resz, ind) 
  
%% Variable declaration 

global tar dam  
h = dam.SIF(ind, 4); 
eps = dam.SIF(ind, 3); 
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KI = dam.SIF(ind, 1); 
KII = dam.SIF(ind, 2); 
K = (KI+KII*1i)*h^(-1i*eps); 
%% define stress field 

X = linspace(0, tar.L/2, resx); 
Y = linspace(tar.h-tar.E0(7), tar.E0(7), (length(tar.seq)-1)*resz); 
  
% stress components 

a = dam.delams(ind, 1); 
h1 = dam.delams(ind, 2); 
for xl = 1:length(X) 
    for yl = 1:length(Y) 
        x1 = X(xl) - a; 
        y1 = Y(yl) - (tar.h - h1); 
        rl = sqrt(x1^2+y1^2); 
         
        % check in which quadrant the coordinate is and adjust theta accordingly 
        if x1 > 0 && y1 >= 0 
            % 1st quadrant 
            tl = atan(y1/x1); 
        elseif x1 < 0 && y1 >= 0  
            % 2nd quadrant 
            tl = atan(y1/x1) + pi; 
        elseif x1 < 0 && y1 < 0 
            % 3rd quadrant 
            tl = atan(y1/x1) - pi; 
        elseif x1 > 0 && y1 < 0 
            % 4th quadrant 
            tl = atan(y1/x1); 
        end 
         
        % define parameters and subfunctions for interface crack 
        TL = eps*log(rl/(2*a))+tl/2; 
        om1 = exp(-eps*(pi-tl)); 
        om2 = exp(eps*(pi+tl)); 
        fxx1 = 3*cos(TL)+2*eps*sin(tl)*cos(tl+TL)-sin(tl)*sin(tl+TL); 
        fxx2 = 3*sin(TL)+2*eps*sin(tl)*sin(tl+TL)+sin(tl)*cos(tl+TL); 
        fzz1 = cos(TL)-2*eps*sin(tl)*cos(tl+TL)+sin(tl)*sin(tl+TL); 
        fzz2 = sin(TL)-2*eps*sin(tl)*sin(tl+TL)-sin(tl)*cos(tl+TL); 
        fxz1 = sin(TL)+2*eps*sin(tl)*sin(tl+TL)+sin(tl)*cos(tl+TL); 
        fxz2 = -cos(TL)-2*eps*sin(tl)*cos(tl+TL)+sin(tl)*sin(tl+TL); 
         
        if y1 > 0 
            sigxx(yl,xl) = KI/(2*sqrt(2*pi*rl))*(om1*fxx1-1/om1*cos(tl-TL))... 
                -KII/(2*sqrt(2*pi*rl))*(om1*fxx2+1/om1*sin(tl-TL)); 
            sigzz(yl,xl) = KI/(2*sqrt(2*pi*rl))*(om1*fzz1+1/om1*cos(tl-TL))... 
                -KII/(2*sqrt(2*pi*rl))*(om1*fzz2-1/om1*sin(tl-TL)); 
            sigxz(yl,xl) = KI/(2*sqrt(2*pi*rl))*(om1*fxz1-1/om1*sin(tl-TL))... 
                -KII/(2*sqrt(2*pi*rl))*(om1*fxz2-1/om1*cos(tl-TL)); 
        elseif y1 < 0 
            sigxx(yl,xl) = KI/(2*sqrt(2*pi*rl))*(om2*fxx1-1/om2*cos(tl-TL))... 
                -KII/(2*sqrt(2*pi*rl))*(om2*fxx2+1/om2*sin(tl-TL)); 
            sigzz(yl,xl) = KI/(2*sqrt(2*pi*rl))*(om2*fzz1-1/om2*cos(tl-TL))... 
                -KII/(2*sqrt(2*pi*rl))*(om2*fzz2+1/om2*sin(tl-TL)); 
            sigxz(yl,xl) = KI/(2*sqrt(2*pi*rl))*(om2*fxz1-1/om2*cos(tl-TL))... 
                -KII/(2*sqrt(2*pi*rl))*(om2*fxz2+1/om2*sin(tl-TL)); 
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        else 
            if x1 > 0 
                tl = 0; 
                sigzz(yl, xl) = real(K*rl^(1i*eps)/sqrt(2*pi*rl)); 
                sigxz(yl, xl) = imag(K*rl^(1i*eps)/sqrt(2*pi*rl)); 
                sigxx(yl,xl) = KI/(2*sqrt(2*pi*rl))*(om1*fxx1-1/om1*cos(tl-TL))... 
                    -KII/(2*sqrt(2*pi*rl))*(om1*fxx2+1/om1*sin(tl-TL)); 
            else 
                tl = pi; 
                sigzz(yl, xl) = 0; 
                sigxz(yl, xl) = 0; 
                sigxx(yl,xl) = KI/(2*sqrt(2*pi*rl))*(om1*fxx1-1/om1*cos(tl-TL))... 
                    -KII/(2*sqrt(2*pi*rl))*(om1*fxx2+1/om1*sin(tl-TL)); 
            end 
             
        end 
             
    end 
     
end 
  
SIGS.XX = sigxx; 
SIGS.ZZ = sigzz; 
SIGS.XZ = sigxz; 
 
 
%% -------------------------- fail_analysisV2.m ---------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This function simply applies the selected failure criterion (eq. 3.6.3) to the 

% local stress valuesand determines whether or not a "cell" has failed. However, a 

% delamination will only be recognized if it fulfills certain requirements: it must 

% not lie between equally oriented plies and the failed section must be longer than 

% 4-5 ply thicknesses, or equivalently 2-2.5 times for half a delamination. 

%-----------------------------------------------------------------------------------% 

% input: 

% - structure SIGPLY containing the following matrices with stress components in ply 

% coordinate system: 

%     * S1, S3, S4, S5 

% - current indentation value, alphat 

%-----------------------------------------------------------------------------------% 

% output: 

% - failflag, indicates whether a delamination can be recognized 

% - failinfo, gives position of the delamination within the stack as well as length 

%   from the centre 

% - FAIL, failure indication matrix, provides a visual overview of the failed cells. 

% Writes 1 if the cell has failed otherwise remains 0 

%-----------------------------------------------------------------------------------% 

% author: J.J. Kurpierz 

% Version: V2 

% date: 08.11.2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of function 

function[flag, failinfo, FAIL] = fail_analysisV2(SIGPLY, alphat) 
  
%% variabel declaration 

global tar sim resx 
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%% Check ply interfaces for delaminations 

% strength data taken from Hexcel for IM7/8551-7. Only exception is Z_C, which has 

% been taken from Lopes' thesis (table 6.1) assuming that X_(2-) = Z_C. 

Z_C = 200e6;                             % transverse compressive strength,[Pa] 
S = 100e6;                               % short-beam shear strength, [Pa] 
X_T = 2757e6;                            % tensile in-plane strength, [Pa] 
X_C = 1620e6;                            % compressive in-plane strength, [Pa] 
  

% r-vector 

r = linspace(0,tar.L/2,resx); 
  
% creating failure matrix 

FAIL = zeros(length(tar.seq)-1, size(SIGPLY.S1,2)); 
failinfo = []; 
countk = 1; 
for k = 1:length(tar.seq)-1 
    for rl = 1:size(SIGPLY.S1,2) 
         
        % according to Brewer-Lagace, modified to take into account the in-plane  
        % stress 
        % We have to check each interface twice. If one of them indicates a failure 
        % that is already considered a failed interface then. 
        % upper 
        if SIGPLY.S1(2*(k-1)+1,rl) < 0 
            checku =(SIGPLY.S3(2*(k-1)+1,rl)/Z_C)^2+(SIGPLY.S4(2*(k-1)+1,rl)/S)^2 ... 
                    +(SIGPLY.S5(2*(k-1)+1,rl)/S)^2+(SIGPLY.S1(2*(k-1)+1,rl)/X_C)^2; 
        else 
            checku =(SIGPLY.S3(2*(k-1)+1,rl)/Z_C)^2+(SIGPLY.S4(2*(k-1)+1,rl)/S)^2 ... 
                    +(SIGPLY.S5(2*(k-1)+1,rl)/S)^2+(SIGPLY.S1(2*(k-1)+1,rl)/X_T)^2; 
        end 
        % lower 
        if SIGPLY.S1(2*(k-1)+2,rl) < 0 
            checkl =(SIGPLY.S3(2*(k-1)+2,rl)/Z_C)^2+(SIGPLY.S4(2*(k-1)+2,rl)/S)^2 ... 
                    +(SIGPLY.S5(2*(k-1)+2,rl)/S)^2+(SIGPLY.S1(2*(k-1)+2,rl)/X_C)^2; 
        else 
            checkl =(SIGPLY.S3(2*(k-1)+2,rl)/Z_C)^2+(SIGPLY.S4(2*(k-1)+2,rl)/S)^2 ... 
                    +(SIGPLY.S5(2*(k-1)+2,rl)/S)^2+(SIGPLY.S1(2*(k-1)+2,rl)/X_T)^2; 
        end 
  
        if checku > 1 || checkl > 1 
            % demand that delamination lies between unequally oriented plies and is 
            % longer than 2.5tply. Additionally, if k = 1 then the indentation must 
            % not be larger than a single tply 
            if tar.seq(k) ~= tar.seq(k+1) && r(rl) > 2.5*tar.E0(7)  
                if (k == 1 && alphat < tar.E0(7)) || k ~= 1 
                    FAIL(k,rl) = 1;      % 1 -> interface fails 
                    if isempty(failinfo) 
                        failinfo(countk,:) = [r(rl) k*tar.E0(7) 0]; 
                    elseif k*tar.E0(7) == failinfo(countk,2) 
                        failinfo(countk,:) = [r(rl) k*tar.E0(7) 0]; 
                    else 
                        countk = countk + 1; 
                        failinfo(countk,:) = [r(rl) k*tar.E0(7) 0]; 
                    end 
                    % we are only interested in the "earliest" (closest to the impact 
                    % site) occurrence of failure 
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                    if sim.br == 1 
                        break 
                    end 
                end 
            end 
        end 
  
        [I,J] = find(FAIL); 
        if isempty(I) 
            flag = 0; 
        else 
            flag = 1; 
        end 
    end 
end 
  
end 
 
 
%% -------------------------- LEFM_toolV3.m -------------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This is the linear elastic fracture mechanics tool, the main module of the 

% simulation. It covers the following aspects: 

% - Setting up the interface matrix (with "interface_func") 

% - Computing the segment and section properties 

% - Determining the displacement functions of all the segments/sections (with 

% "disp_func") 

% - applying a filtering scheme to determine which segments belong to the computation 

% of a certain delamination 

% - computing the Energy Release Rate using the strain energy integral (with 

% "ERR_strain") 

% - determining whether any of the delaminations is growing? 

% - Computing the Stress Intensity Factor 

% - Updating the bending compliance 

%-----------------------------------------------------------------------------------% 

% inputs: 

% - current load, Pt 

% - con, contact flag: 0 -> unconstrained; 1-> constrained 

% - by declaring the variable "dam" globally it enables access to the structure 

% defined in the master file containing the field "delams" 

% - delams: matrix with size and thickness positions of all delaminations. The 

% through-the-thickness position is given in meters rather than interface number 

% outputs: 

% - several fields will be added to the structure "dam" 

%     * deq - equivalent bending compliance 

%     * SIF - stress intensity factors, per tip 2 values, KI and KII 

%     * ERR - matrix with ERR values, per tip 2 values, unconstrained and constrained 

%             approach 

%-----------------------------------------------------------------------------------% 

% author: J.J. Kurpierz 

% Version: V1 

% date: 08.11.12012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% Start of function 

function[Pnew] = LEFM_toolV3(P,wc,contact) 
  
%% Variable declaration 

global tar dam 
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% define the output variable. Only in case of growth will it change. 

Pnew = P; 
  
%% input 

% call interface function in order to create the interface matrix and obtain all 

% sublaminates 

[interface, tips, seqk, height, elemcount] = interface_funcV3(dam.delams); 
dam.delams = tips; 
seqk{elemcount} = tar.seq; 
height(elemcount) = tar.h; 
  
%% segment and beam properties 

% for each beam segement the reduced bending stiffness matrix needs to be computed. 

for el = 1:elemcount 
    [K, ~] = ABDmat(tar.E0, seqk{el}, 0, 0); 
    % reduced bending matrix D due to unsymmetric and unbalanced laminates 
    Dred = K(4:6,4:6); 
    % compliance matrix 
    dred = inv(Dred); 
    % Youngs modulus of the composite plate, based on bending stiffness (see 
    % Kassapoglou or Reddy) 
%         E(el) = 12/(height(el)^3*dred(1,1)); 

    EI(el) = tar.w/dred(1,1); 
end 
  
% section flexural rigidity for constrained contact 

n = size(interface,2) + 1; 
for x = 1:n-1 
   EIsec(x) = sum(EI(unique(interface(:,x)))); 
end 
EIsec(n) = EI(end); 
  
% x-coordinate for the crack tips 

xc = tar.L/2-flipud(unique(tips(:,1))); 
  
%% beam displacement 

% solve the system of equations resulting from the unknown segment and section 

% displacements, based on the chosen contact formulation 

if contact == 0 
    Cmat = SoE_ucbV2(interface,EI,xc,P); 
else 
    Cmat = SoE_cbV2(interface,EIsec,xc,P); 
end 
  
%% ERR and SIF 

for gl = 1:size(tips,1) 
    % ERR and SIF, calling ERR_Strain             
    [dam.G(gl,1),dam.SIF(gl,1:5)]=ERR_strainV5(tips,gl,contact,P); 
    if dam.G(gl,1) > tar.Gcr 
        dam.delams(gl,3) = 1; 
        % calling delam_growth in order to determine new delamination size, P, G and 
        % SIF. 
%         [Pnew,dam.G(gl,1),dam.SIF(gl,1:5)] = delam_growth_appdispV2(gl,contact,wc); 

        % alternatively, only update delamination size and P 
        [Pnew, ~, ~] = delam_growth_appdispV2(gl,contact,wc); 
        fprintf(1, 'the new applied load is %1.4e N.\n', Pnew) 
    end 
end 
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%% update equivalent bending compliance 

     
% write representative d(1,1) entry for simply supported or clamped beam  

% (see p. 97, notebook) 

if tar.BC == 0 
    ds11 = 48*tar.w*wc/(Pnew*tar.L^3); 
else 
    ds11 = 192*tar.w*wc/(Pnew*tar.L^3); 
end 
[K,~] = ABDmat(tar.E0, tar.seq, 0, 0); 
D = K(4:6,1:3); 
d = inv(D); 
di = 1-ds11/d(1,1); 
dam.deq = (1-di)*d; 
  
end 
 
 
%% -------------------------- Pupdate_func.m ------------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% function to determine new applied load, once new delamination sites have been 

% found. 

%-----------------------------------------------------------------------------------% 

% input: 

% - wc, current applied displacment  

% 

% output: 

% - Pnew, updated applied force due to the change in compliance 

%-----------------------------------------------------------------------------------% 

% author: J.J. Kurpierz 

% date: 15.11.2012 

% Version: V1 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of the function 

function[Pnew] = Pupdate_funcV1(wc, contact) 
  
%% Variable declaration 

% the global variable "dam" and "tar" will be used to pass information between the 

% LEFM_tool and the master file 

global dam tar 
  
%% input 

% call interface function in order to create the interface matrix and obtain all 

% sublaminates 

[interface, tips, seqk, height, elemcount] = interface_funcV3(dam.delams); 
seqk{elemcount} = tar.seq; 
height(elemcount) = tar.h; 
  
%% segment and beam properties 

% for each beam segement the reduced bending stiffness matrix needs to be computed. 

for el = 1:elemcount 
    [K, ~] = ABDmat(tar.E0, seqk{el}, 0, 0); 
    % reduced bending matrix D due to unsymmetric and unbalanced laminates 
    Dred = K(4:6,4:6); 
    % compliance matrix 
    dred = inv(Dred); 
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    % Youngs modulus of the composite plate, based on bending stiffness (see 
    % Kassapoglou or Reddy) 
%         E(el) = 12/(height(el)^3*dred(1,1)); 

    EI(el) = tar.w/dred(1,1); 
end 
  
% section flexural rigidity for constrained contact 

n = size(interface,2) + 1; 
for x = 1:n-1 
   EIsec(x) = sum(EI(unique(interface(:,x)))); 
end 
EIsec(n) = EI(end); 
  
% x-coordinate for the crack tips 

xc = tar.L/2-flipud(unique(tips(:,1))); 
  
%% beam displacement 

% solve the system of equations resulting from the unknown segment and section 

% displacements, based on the chosen contact formulation.  

% This will serve as the new compliance (see page 31 in NB 3). Use unit load as input 

if contact == 0 
    Cmat = SoE_ucbV2(interface,EI,xc,1); 
else 
    Cmat = SoE_cbV2(interface,EIsec,xc,1); 
end 
  
% displacement due to unit load 

wc_u = Cmat(1,end-1) + Cmat(2,end-1)*tar.L/2 +... 
        Cmat(3,end-1)*(tar.L/2)^2 + Cmat(4,end-1)*(tar.L/2)^3; 
     
% new applied load 

Pnew = wc/wc_u; 
  
end 
 
 
%% -------------------------- interface_func.m ----------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This function determines the interface based on the numbering scheme adopted in 

% this work. 

%-----------------------------------------------------------------------------------% 

% input: 

% - matrix delams, containing through-the-thickness (z) position and length of the 

% delamination. The z-coordinate must be given in meters  

%-----------------------------------------------------------------------------------% 

% output: 

% - interface, matrix containing the numbering and connectivity of the separated 

% beam segments. The number of columns represents the number of delaminations of 

% different length 

% - tips, same as delams, only now it is sorted according to: 

%     * 1st the length (from long to short) and  

%     * 2nd the position within the stack (from impact location to back face) 

% - seqk, the sublaminates created due to delaminations 

% height, vector containing the height of the beam segments 

% elemcount, number of beam segments including the undamaged part. "elemcount" also 

% serves as indicator to this part 

%-----------------------------------------------------------------------------------% 

% author: J.J. Kurpierz 

% Version: V1 

% date: 08.11.2012 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of function 

function [interface, tips, seqk, height, elemcount] = interface_funcV3(delams) 
  
%% Variable declaration 

global tar  
h_pl = tar.h; 
seq =tar.seq; 
E0 = tar.E0; 
  
%% Preliminaries 

% sort the delaminations according to their length for the numbering of the segments 

if size(delams,1) > 1 
    % sorted matrix of delamination size and location 
    [~,i] = sort(delams, 1, 'descend');  
    for ind = 1:size(i,1); 
        tips(ind,:) = delams(i(ind),:); 
    end 
else 
    tips = delams; 
end 
  
[D, ~, Ic] = unique(tips(:,1)); 
for ind = 1:length(D) 
    I = find(tips==D(ind)); 
    if length(I) > 1 
        tips(I(1):I(end),:) = sort(tips(I(1):I(end),:),1); 
    end 
end 
  
% get the integer interface numbers 

tipseq(:,1) = round(tips(:,2)/E0(7)); 
  
% number of delaminations 

n = size(tips,1); 
% initiation of the interface matrix. It serves as input for the continuity equations 

% to be set up for solving for the unknowns. 

interface = [1;2]; 
  
elemcount = 1; 
% element pointer for interface creation 

count = 3; 
% flags for interface creation 

att1 = 0; 
att2 = 0; 
  
%% numbering scheme 

for ind = 1:n 
    % determining where in the beam segment the next smaller delamination splits the 
    % segment into two new ones 
    if n == 1 
        height(elemcount:elemcount+1) = [tips(1,2) h_pl-tips(1,2)]; 
        seqk{elemcount} = seq(1:tipseq(1,1)); 
        seqk{elemcount+1} = seq(tipseq(1,1)+1:end); 
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        elemcount = elemcount + 2;  
        newseg = 1; 
                 
    else 
        % check how many equal sized delaminations exist 
        I = find(tips(:,1) == tips(ind,1)); 
        if length(I) > 1 
            % is current delamination size (ind) the first of its length (compare to 
            % I) 
            if ind == I(1) 
                if ind == 1 
                    height(elemcount) = tips(1,2); 
                    seqk{elemcount} = seq(1:tipseq(1,1)); 
                    elemcount = elemcount + 1; 
                    newseg = 1; 
                else 
                    for x = 1:ind 
                        tipz = tips(ind,2); 
                        tipz2 = round(tipz/E0(7)); 
                        tipres = sort(tips(1:ind-1,2)); 
                        tipres2 = round(tipres/E0(7)); 
                        if x == 1 
                            if (0 < tipz) && (tipz < tipres(1))  
                               newseg = 1; 
                               height(elemcount) = tipz; 
                               seqk{elemcount} = seq(1:tipz2); 
                               elemcount = elemcount + 1; 
                               if tips(ind+1,2) > tipres(1) 
                                   height(elemcount) = tipres(1)-tipz; 
                                   seqk{elemcount} = seq(tipz2+1:tipres2(1)); 
                                   elemcount = elemcount + 1; 
                                   att1 = 1; 
                               end 
                               break 
                            end 
                        elseif x == ind 
                            if (tipres(end) < tipz) && (tipz < tips(ind+1,2)) 
                               newseg = ind; 
                               height(elemcount) = tipz-tipres(end); 
                               seqk{elemcount} = seq(tipres2(end)+1:tipz2); 
                               elemcount = elemcount + 1; 
                            end 
                        elseif (tipres(x-1) < tipz) && (tipz < tipres(x)) 
                            newseg = x; 
                            height(elemcount) = tipz-tipres(x-1); 
                            seqk{elemcount} = seq(tipres2(x-1)+1:tipz2); 
                            elemcount = elemcount + 1; 
                            att2 = 1; 
                            if tips(ind+1,2) > tipres(x) 
                                height(elemcount) = tipres(x) - tipz; 
                                seqk{elemcount} = seq(tipz2+1:tipres2(x)); 
                                elemcount = elemcount + 1; 
                                att1 = 1; 
                                att2 = 0; 
                            end 
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                            break 
                        end 
                    end 
                end 
            elseif ind == I(end) 
                for x = 2:ind 
                    tipz = tips(ind,2); 
                    tipz2 = round(tipz/E0(7)); 
                    [tipres, xind] = sort(tips(1:ind-1,2)); 
                    tipres2 = round(tipres/E0(7)); 
                    if x == ind 
                        if (tipres(end) < tipz) && (tipz < h_pl)                                 
                           newseg = ind; 
                           height(elemcount:elemcount+1) = [tipz-tipres(end)... 
                                                            h_pl-tipz]; 
                           seqk{elemcount} = seq(tipres2(end)+1:tipz2); 
                           seqk{elemcount+1} = seq(tipz2+1:end); 
                           elemcount = elemcount + 2;   
                           temp = unique(tips(xind,1)); 
                           if length(temp) > 1 
                               att1 = 1; 
                           else 
                               att1 = 0; 
                           end 
                        elseif (tipres(end) > tipz) 
                           newseg = ind-1; 
                           height(elemcount:elemcount+1) = [tipz-tipres(end-1)... 
                                                            tipres(end)-tipz]; 
                           seqk{elemcount} = seq(tipres2(end-1)+1:tipz2); 
                           seqk{elemcount+1} = seq(tipz2+1:tipres2(end)); 
                           elemcount = elemcount + 2; 
                           att1 = 1; 
                        end     
                    elseif (tipres(x-1) < tipz) && (tipz < tipres(x)) 
                        newseg = x; 
                        height(elemcount:elemcount+1) = [tipz-tipres(x-1)... 
                                                         tipres(x)-tipz]; 
                        seqk{elemcount} = seq(tipres2(x-1)+1:tipz2); 
                        seqk{elemcount+1} = seq(tipz2+1:tipres2(x)); 
                        elemcount = elemcount + 2; 
                        att3 = 1; 
                        break 
                    end 
                end 
            else 
                quit = 0; 
                tipz = tips(ind,2); 
                tipz2 = round(tipz/E0(7)); 
                [tipres, xind] = sort(tips(1:ind-1,2)); 
                tipres2 = round(tipres/E0(7)); 
                for x = 2:ind 
                    if (tips(ind,1) == tips(xind(x-1),1)) 
                        if x == ind || (tips(ind+1,2) < tipres(x)) 
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                            quit = 0; 
                            break 
                        end 
                     
                     
%                     keyboard 

                    elseif x == ind 
                        % the current delamination is either situated beneath or  
                        % above a longer one or between two of the same length as the 
                        % current one 
                        if (tipres(x-1)<tipz) && (tipres(x-1)>tips(ind-1,2))... 
                            && (tips(ind,1) ~= tips(xind(x-1),1)) 
                            att1 = 1; 
                            newseg = ind; 
                            height(elemcount) = tipz - tipres(x-1); 
                            seqk{elemcount} = seq(tipres2(x-1)+1:tipz2); 
                            elemcount = elemcount + 1; 
                            quit = 1; 
                            break 
                        else 
                            newseg = x-1; 
                            height(elemcount:elemcount+1) = [tipz - tips(ind-1,2) ... 
                                                             tipres(x-1) - tipz]; 
                            seqk{elemcount} = seq(tipseq(ind-1,1)+1:tipz2); 
                            seqk{elemcount+1} = seq(tipz2+1:tipres2(x-1)); 
                            elemcount = elemcount + 2; 
                            quit = 1; 
                            att3 = 1; 
                            break 
                        end 
              
                    % current delam lies in-between two different sized delaminations 
                    elseif (tipres(x-1) < tipz) && (tipres(x-1) > tips(ind-1,2)) ... 
                            && (tips(ind,1) ~= tips(xind(x-1),1)) && ... 
                            (tipres(x) > tipz) && (tipres(x) < tips(ind+1,2))... 
                            && (tips(ind,1) ~= tips(xind(x),1)) 
                        newseg = x; 
                        height(elemcount:elemcount+1) = [tipz - tipres(x-1) ... 
                                                         tipres(x)-tipz]; 
                        seqk{elemcount} = seq(tipres2(x-1)+1:tipz2); 
                        seqk{elemcount+1} = seq(tipz2+1:tipres2(x)); 
                        elemcount = elemcount + 2; 
                        quit = 1; 
                        att3 = 1; 
                        break 
                     
                    % current delam lies below a longer exisiting one     
                    elseif (tipres(x-1) < tipz) && (tipres(x-1) > tips(ind-1,2))... 
                            && (tips(ind,1) ~= tips(xind(x-1),1))... 
                            && (tipres(x) > tipz) 
                        newseg = x; 
                        height(elemcount) = tipz - tipres(x-1); 
                        seqk{elemcount} = seq(tipres2(x-1)+1:tipz2); 
                        elemcount = elemcount + 1; 
                        quit = 1; 
                        att1 = 1; 
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                        break 
                    % current delam lies above a longer exisiting one     
                    elseif (tipres(x-1) > tipz) && (tipres(x-1) < tips(ind+1,2))... 
                            && (tips(ind,1) ~= tips(xind(x-1),1)) 
                        newseg = x-1; 
                        height(elemcount:elemcount+1) = [tipz - tips(ind-1,2) ... 
                                                         tipres(x-1) - tipz]; 
                        seqk{elemcount} = seq(tipseq(ind-1,1)+1:tipz2); 
                        seqk{elemcount+1} = seq(tipz2+1:tipres2(x-1)); 
                        elemcount = elemcount + 2; 
                        quit = 1; 
                        att3 = 1; 
                        break 
                    end 
                end 
                % current delamination lies between two equal length 
                if quit == 0 
                    newseg = newseg + 1; 
                    height(elemcount) = tipz-tips(ind-1,2); 
                    seqk{elemcount} = seq(tipseq(ind-1,1)+1:tipz2); 
                    elemcount = elemcount + 1; 
                    temp = unique(tips(xind,1)); 
                    if length(temp) > 1 
                        att1 = 1; 
                    else 
                        att1 = 0; 
                    end 
                end 
            end 
        else 
            % not equal sized than the first one 
            for x = 1:ind 
                if ind == 1 
                    height(elemcount:elemcount+1) = [tips(1,2) h_pl-tips(1,2)]; 
                    seqk{elemcount} = seq(1:tipseq(1,1)); 
                    seqk{elemcount+1} = seq(tipseq(1,1)+1:end); 
                    elemcount = elemcount + 2; 
                else 
                    tipz = tips(ind,2); 
                    tipz2 = round(tipz/E0(7)); 
                    tipres = sort(tips(1:ind-1,2)); 
                    tipres2 = round(tipres/E0(7)); 
                    if x == 1 
                        if (0 < tipz) && (tipz < tipres(1))  
                           newseg = 1; 
                           height(elemcount:elemcount+1) = [tipz tipres(1)-tipz]; 
                           seqk{elemcount} = seq(1:tipz2); 
                           seqk{elemcount+1} = seq(tipz2+1:tipres2(1)); 
                           elemcount = elemcount + 2; 
                        end     
                    elseif x == ind 
                        if (tipres(end) < tipz) && (tipz < h_pl) 
                            newseg = ind; 
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                            height(elemcount:elemcount+1) = [tipz-tipres(end)... 
                                                             h_pl-tipz]; 
                            seqk{elemcount} = seq(tipres2(end)+1:tipz2); 
                            seqk{elemcount+1} = seq(tipz2+1:end); 
                            elemcount = elemcount + 2; 
                        end 
                    else 
                        if (tipres(x-1) < tipz) && (tipz < tipres(x)) 
                            newseg = x; 
                            height(elemcount:elemcount+1) = [tipz-tipres(x-1)... 
                                                             tipres(x)-tipz]; 
                            seqk{elemcount} = seq(tipres2(x-1)+1:tipz2); 
                            seqk{elemcount+1} = seq(tipz2+1:tipres2(x)); 
                            elemcount = elemcount + 2; 
                        end 
                    end 
                end 
            end 
        end 
    end 
%     keyboard 

    %% updating the interface matrix 

    if ind > 1 
        if newseg == ind 
            if tips(ind,1) == tips(ind-1,1)    
                if (att1 == 1 && ind == I(end)) 
                    interface = [interface(1:newseg-1,:); 
                                 [interface(newseg,1:end-1) count]; 
                                 interface(newseg, 1:end-1) count+1]; 
                    count = count + 2;                               
                    att1 = 0; 
                elseif att1 == 1 
                    interface = [interface(1:newseg-1,:); 
                                 [interface(newseg,1:end-1) count]; 
                                 interface(newseg:end,:)]; 
                    count = count + 1; 
                    att1 = 0; 
                else 
                    interface = [interface(1:newseg,:); 
                                 interface(end,1:end-1) count]; 
                    count = count + 1; 
                end 
            elseif length(I) == 1 
                interface = [interface(1:newseg,:) [interface(1:newseg-1, end);... 
                            count]; 
                            interface(newseg,:) count+1]; 
                count = count + 2; 
            else 
                interface = [interface(1:newseg,:) [interface(1:newseg-1, end);... 
                           count]; 
                            interface(newseg,:) count]; 
                count = count + 1; 
            end 
                  
        else 
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            if tips(ind,1) == tips(ind-1,1)      
                if att1 == 1 && ind == I(end) 
                    interface = [interface(1:newseg-1,:); 
                                 [interface(newseg,1:end-1) count]; 
                                 [interface(newseg, 1:end-1) count+1]; 
                                 interface(newseg+1:end,:)]; 
                    count = count + 2; 
                    att1 = 0; 
                elseif att1 == 1 
                    interface = [interface(1:newseg-1,:); 
                                 [interface(newseg,1:end-1) count]; 
                                 interface(newseg:end,:)]; 
                    count = count + 1; 
                    att1 = 0; 
  
                elseif att3 == 1 
                    interface = [interface(1:newseg-1,:); 
                                 [interface(newseg,1:end-1) count]; 
                                 [interface(newseg, 1:end-1) count+1]; 
                                 interface(newseg+1:end,:)]; 
                    count = count + 2; 
                    att3 = 0; 
                end 
            else 
                if att1 == 1 || length(I) == 1 
%                     fprintf(1, 'hah\n') 

                    interface = [interface(1:newseg,:) [interface(1:newseg-1,end);count]; 
                                 [interface(newseg,:) count+1]; 
                                 interface(newseg+1:end,:) interface(newseg+1:end,end)]; 
                    count = count + 2; 
                    att1 = 0; 
                else 
%                     fprintf(1,'heh\n') 

                    interface = [interface(1:newseg,:) [interface(1:newseg-1,end);count]; 
                                 [interface(newseg,:) count]; 
                                 interface(newseg+1:end,:) interface(newseg+1:end,end)]; 
                    count = count + 1; 
                end 
            end  
        end 
    end  
end 
  
end 
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function Cmat = SoE_cbV2(interface, EIsec, xc, P) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This function solves for the displacement function of the beam segment assuming 

% constrained contact, i.e. parallel beam segments have the same displacement. 

% --------------------------------------------------------------------------------- % 

% Input: 

% - interface (matrix showing the segment connectivity) 

% - EIsec (vector containing flexural rigidities for each section defined by a change 

% in the "cross-section" of the beam) 

% - xc (vector containg the x-coordinate of the delamination tips) 

% - BC (boundary condition: 0 -> simply supported; 1 -> clamped) 

% - P (current load acting on the beam) 

% --------------------------------------------------------------------------------- % 

% Output: 

% - Cmat (matrix of beam displacement coefficients where every column represents 

% another segment and the displacment per segment is defined as: 

% w_i(x) = Cmat(1,i) + Cmat(2,i)*x + Cmat(3,i)*x^2 + Cmat(4,i)*x^3; 

  

% file info: 

% - author: J.J. Kurpierz 

% - date: 16.10.2012 

% - version: V1 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% variable declaration 

global tar 
L = tar.L; 
BC = tar.BC; 
  
%% System of 4*(elemcount)-2 equations 

% initialize matrix, force vector and row count 

% number of segments 

n = size(interface,2)+1; 
elemcount = length(unique(interface))+1; 
% the number of unknowns per section is two due to the consecutive integration of the 

% expression d2w/dx2 = -M/EI. The total number of unknowns is therfore 2*n. In case 

% of the clamped beam we have the unknown root moment to account for resulting in 

% 2n+1 unknowns.  

% However, in the case of a clamped beam, the first section (the undamaged one) will  

% always have the the two integration constants equal to zero. Therefore we have 2n-1 

% equations in the system of equations. For the simply supported there is one 

% coefficient for the undamaged part that can be dropped, again resulting in 2n-1 

% equations, i.e. a solvable system. 

A = zeros(2*n-1, 2*n-1); 
F = zeros(2*n-1,1); 
% intialize the row count variable 

y = 1; 
  
%---------------------------- boundary conditions ----------------------------------% 

% boundary formulations for the clamped and simply supported beam 

% The conditions at the support of the beam (x=0) do not need to be taken into 

% acount since it would yield in one or two rows where all entries are equal to zero 

  

% at midspan of the beam, x = L/2 

% rotation of the beam is equal to 0, w_n-1' = 0 

switch BC 
    case 0 
        A(y,2*(n-1)-1) = 1; 
        F(y) = P*L^2/(16*EIsec(n-1));  
    case 1 
        A(y,2*(n-1)-1) = 1; 
        A(y, end) = -L/(2*EIsec(n-1)); 



 113 

 

        F(y) = P*L^2/(16*EIsec(n-1)); 
end 
  
  
         
%---------------------------- continuity equations ---------------------------------% 

  

% at each interface boundary (at each entry of xc) we have two continuity equations: 

% displacement and rotation are equal to each other. Only between the undamaged and 

% first damaged part we have to apply slightly different conditions 

  

  

% go through each crack 

for x = 1:n-1 
    switch BC 
        case 0 
            if x == 1 
                % displacement  
                % update count variable 
                y = y+1; 
                A(y, 1:2) = -[xc(1) 1]; 
                A(y, end) = xc(1); 
                F(y) = P*xc(1)^3/12*(1/(EIsec(n)) - 1/(EIsec(1))); 
  
                % rotation 
                % update count variable 
                y = y+1; 
                A(y,1) = -1; 
                A(y, end) = 1; 
                F(y) = P*xc(1)^2/4*(1/(EIsec(n)) - 1/(EIsec(1))); 
  
            else 
                % displacement  
                % update count variable 
                y = y+1; 
                A(y, 2*(x-1)-1:2*x) = [xc(x) 1 -xc(x) -1]; 
                F(y) = P*xc(x)^3/12*(1/(EIsec(x-1)) - 1/(EIsec(x))); 
  
                % rotation 
                % update count variable 
                y = y+1; 
                A(y, 2*(x-1)-1:2*x) = [1 0 -1 0]; 
                F(y) = P*xc(x)^2/4*(1/(EIsec(x-1)) - 1/(EIsec(x))); 
            end 
        case 1 
            if x == 1 
                % displacement  
                % update count variable 
                y = y+1; 
                A(y, 1:2) = -[xc(1) 1]; 
                A(y, end) = xc(1)^2/2*(1/(EIsec(1)) - 1/(EIsec(n))); 
                F(y) = P*xc(1)^3/12*(1/(EIsec(n)) - 1/(EIsec(1))); 
  
                % rotation 
                % update count variable 
                y = y+1; 
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                A(y,1) = -1; 
                A(y, end) = xc(1)*(1/(EIsec(1)) - 1/(EIsec(n))); 
                F(y) = P*xc(1)^2/4*(1/(EIsec(n)) - 1/(EIsec(1))); 
  
            else 
                % displacement  
                % update count variable 
                y = y+1; 
                A(y, 2*(x-1)-1:2*(x-1)) = [xc(x) 1]; 
                A(y, 2*x-1:2*x) = -[xc(x) 1]; 
                A(y, end) = xc(x)^2/2*(1/(EIsec(x)) - 1/(EIsec(x-1))); 
                F(y) = P*xc(x)^3/12*(1/(EIsec(x-1)) - 1/(EIsec(x))); 
  
                % rotation 
                % update count variable 
                y = y+1; 
                A(y, 2*(x-1)-1) = 1; 
                A(y, 2*x-1) = -1; 
                A(y, end) = xc(x)*(1/(EIsec(x)) - 1/(EIsec(x-1))); 
                F(y) = P*xc(x)^2/4*(1/(EIsec(x-1)) - 1/(EIsec(x))); 
            end 
         
        case 2 
            if x == 1 
                % displacement  
                % update count variable 
                y = y+1; 
                A(y, 1:2) = -[xc(1) 1]; 
                F(y) = P*(L/2*xc(1)^2-xc(1)^3/6)*(1/(EIsec(1)) - 1/(EIsec(n))); 
  
                % rotation 
                % update count variable 
                y = y+1; 
                A(y,1) = -1; 
                F(y) = P*(L*xc(1) - xc(1)^2/2)*(1/(EIsec(1)) - 1/(EIsec(n))); 
  
            else 
                % displacement  
                % update count variable 
                y = y+1; 
                A(y, 2*(x-1)-1:2*x) = [xc(x) 1 -xc(x) -1]; 
                F(y) = P*(L/2*xc(1)^2-xc(1)^3/6)*(1/(EIsec(x)) - 1/(EIsec(x-1))); 
  
                % rotation 
                % update count variable 
                y = y+1; 
                A(y, 2*(x-1)-1:2*x) = [1 0 -1 0]; 
                F(y) = P*(L*xc(1) - xc(1)^2/2)*(1/(EIsec(x)) - 1/(EIsec(x-1))); 
            end 
             
    end 
end 
  
if BC == 2 
    % remove first row and last column 
    A(1,:) = []; 
    A(:,end) = []; 
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    F(1) = []; 
end 
  
%% solve the system 

C1 = A\F; 
% SVD approach 

tol = size(A,2)*2^-53; 
[U,S,V] = svd(A); 
Sinv = zeros(size(A,2)); 
for il = 1:size(A,2) 
    if (S(il,il)/S(1) < tol) | (S(il,il) == 0) 
        Sinv(il,il) = 0; 
    else 
        Sinv(il,il) = 1/S(il,il); 
    end 
end 
  
if size(A,1) == size(A,2) 
    % solution vector according to SVD 
    C = V*Sinv*U'*F; 
else 
    C = 0; 
    for il = 1:size(A,2) 
        C = C + dot(U(:,il),F)*Sinv(il,il)*V(:,il); 
    end 
end 
  
%% rearranging the coefficients, making them easier to discern 

Cmat = zeros(4,n); 
for ind = 1:n 
    if ind == n 
        switch BC 
            case 0 
                Cmat(:,ind) = [0; C(end); 0; -P/(12*EIsec(n))]; 
            case 1 
                Cmat(:,ind) = [0;0; -C(end)/(2*EIsec(n)); -P/(12*EIsec(n))]; 
            case 2 
                Cmat(:,ind) = [0;0; P*L/(2*EIsec(n)); -P/(6*EIsec(n))]; 
        end 
    else 
        switch BC 
            case 0 
                Cmat(1:4,ind) = [C(2*ind); C(2*ind-1); 0; -P/(12*EIsec(ind))]; 
            case 1 
                Cmat(1:4,ind) = [C(2*ind); C(2*ind-1); ... 
                    -C(end)/(2*EIsec(ind)); -P/(12*EIsec(ind))]; 
            case 2 
                Cmat(1:4,ind) = [C(2*ind); C(2*ind-1); ... 
                    P*L/(2*EIsec(ind)); -P/(6*EIsec(ind))]; 
        end 
    end 
end 
 



116 Appendix A – MATLAB Code 

 
function [Cmat] = SoE_ucbV2(interface, EI, xc, P) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This function solves for the displacement function of the beam segments assuming 

% unconstrained contact, i.e. each beam segment is moving indenpendently. 

% --------------------------------------------------------------------------------- % 

% Input: 

% - interface (matrix showing the segment connectivity) 

% - EI (vector containing flexural rigidities for each beam segment) 

% - xc (vector containg the x-coordinate of the delamination tips) 

% - BC (boundary condition: 0 -> simply supported; 1 -> clamped) 

% - P (current load acting on the beam) 

% --------------------------------------------------------------------------------- % 

% Output: 

% - Cmat (matrix of beam displacement coefficients where every column represents 

% another segment and the displacment per segment is defined as: 

% w_i(x) = Cmat(1,i) + Cmat(2,i)*x + Cmat(3,i)*x^2 + Cmat(4,i)*x^3; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% file info 

% author: JJ Kurpierz 

% date: 16.10.2012 

% version: V1 

  

%% variable declaration 

global tar 
L = tar.L; 
BC = tar.BC; 
  
%% System of 4*(elemcount)-2 equations 

% initialize matrix, force vector and row count 

elemcount = length(EI); 
elems = 1:elemcount; 
A = zeros(4*elemcount-2, 4*elemcount-2); 
F = zeros(4*elemcount-2,1); 
% intialize the row count variable 

y = 1; 
% number of delaminations 

n = size(interface,1) - 1; 
  
%% --------------------------- boundary conditions ------------------------------- %% 

  

switch BC 
     
    case 0 
        % boundary formulations for the simply supported beam 
        % For the case of a simply supported beam, we have the following two 
        % conditions at the support: - deflection w is equal to zero -> C_0,1 = 0 and 
        % the moment is equal to zero -> C_0,3 = 0. These two coefficients do not 
        % have to be taken into account anymore. This means that in the case of a 
        % simply supported beam the last two entries of C are C_0,2 and C_0,4. 
         
        % at midspan of the beam, x = L/2 
        % applied force P/2 equals the sum of the shear forces V_k acting in the 
        % segments. V_k = M_k' = -EI_k*w_k''' = -EI_k(6*C_k,4) 
        for x = 1:n+1 
            A(y,interface(x,end)*4) = -6*EI(interface(x,end)); 
        end 
        F(1) = P/2; 
         
        % the rotation of the beam segments is equal to zero, w_k' = 0 
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        for x = 1:n+1 
            y = y+1; 
            A(y,4*(interface(x,end)-1)+2:4*interface(x,end)) =... 
                [1, L, 3*(L/2)^2]; 
        end 
         
        % the displacements of the beam segements are the same at the end of the 
        % clamped, w_k = w_k+1 
        for x = 1:n 
            y = y + 1; 
            A(y,4*(interface(x,end)-1)+1:4*interface(x,end)) = ... 
                [1, L/2, (L/2)^2, (L/2)^3]; 
            A(y,4*(interface(x+1,end)-1)+1:4*interface(x+1,end)) =... 
                -[1, L/2, (L/2)^2, (L/2)^3]; 
        end 
         
    case 1 
        % boundary formulations for the clamped beam 
        % The conditions at the root of the beam (x=0) does not need to be taken into 
        % acount since it would yield in two rows where all entries are equal to zero 
         
        % at midspan of the beam, x = L/2 
        % applied force P/2 equals the sum of the shear forces V_k acting in the 
        % segments. V_k = M_k' = -EI_k*w_k''' = -EI_k(6*C_k,4) 
        for x = 1:n+1 
            A(y,interface(x,end)*4) = -6*EI(interface(x,end)); 
        end 
        F(1) = P/2; 
         
        % the rotation of the beam segments is equal to zero, w_k' = 0 
        for x = 1:n+1 
            y = y+1; 
            A(y,4*(interface(x,end)-1)+2:4*interface(x,end)) =... 
                [1, L, 3*(L/2)^2]; 
        end 
         
        % the displacements of the beam segements are the same at the end of the 
        % clamped, w_k = w_k+1 
        for x = 1:n 
            y = y + 1; 
            A(y,4*(interface(x,end)-1)+1:4*interface(x,end)) = ... 
                [1, L/2, (L/2)^2, (L/2)^3]; 
            A(y,4*(interface(x+1,end)-1)+1:4*interface(x+1,end)) =... 
                -[1, L/2, (L/2)^2, (L/2)^3]; 
        end 
               
    case 2 
        % boundary formulations for the cantilevered beam 
        % The conditions at the root of the beam (x=0) does not need to be taken into 
        % acount since it would yield in two rows where all entries are equal to zero 
        
        % at the end of the cantilever, x = L 
        % applied force P equals the sum of the shear forces V_k acting in the 
        % segments. V_k = M_k' = -EI_k*w_k''' = -EI_k(6*C_k,4) 
        for x = 1:n+1 
            A(y,interface(x,end)*4) = -6*EI(interface(x,end)); 
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        end 
        F(1) = P; 
         
        % the internal moment in each segment is zero, M_k = 0 
        for x = 1:n+1 
            y = y + 1; 
            A(y,4*(interface(x,end)-1)+3:4*interface(x,end)) = ... 
                [-2*E*I(interface(x,end)) -6*EI(interface(x,end))*L]; 
        end 
                 
        % the displacements of the beam segements are the same at the end of the 
        % cantilever, w_k = w_k+1 
        for x = 1:n 
            y = y + 1; 
            A(y,4*(interface(x,end)-1)+1:4*interface(x,end)) = [1, L, L^2, L^3]; 
            A(y,4*(interface(x+1,end)-1)+1:4*interface(x+1,end)) =... 
                -[1, L, L^2, L^3]; 
        end 
                 
end 
  
%% --------------------------- continuity equations ------------------------------ %% 

  

% at each delamination tip we have to see how many segments are joined up and set up 

% the equations accordingly. We always have though that the displacement of the 

% "intact" beam is equal to each of the resulting segments and equally for the 

% rotation. Further are both shear force and moment in the intact segment equal to 

% the sum of shear forces and moments in the resulting segments. 

% w_j = w_k, w_j = w_l, w_j' = w_k', w_j' = w_l', M_j = M_k + M_l, V_j = V_k + V_l 

  

% go through each crack 

for x = 1:size(interface,2) 
    % choose the appropriate elements for the defintion of the crack tip equations 
    if x == 1 
        % "intact" segment 
        j = elems(end); 
        % "split" segements 
        split{1} = unique(interface(:,1)); 
    else 
        % determine those locations where a delamination is present 
        temp = interface(:,x) - interface(:,x-1); 
        % find non-zero elements, as they have been split 
        temp1 = find(temp); 
        % use those indices in interface(:,x-1) to see which element has been split 
        temp2 = interface(temp1,x-1); 
        temp3 = unique(temp2); 
        if length(temp3) == 1 
            % "intact" segment 
            j = temp3; 
            % "split" segements 
            split{1} = unique(interface(temp1,x)); 
        else 
            % "intact" segments, this will set up another loop below 
            j = temp3; 
            for tl = 1:length(temp3) 
                temp4 = find(temp2 == temp3(tl)); 
                split{tl} = unique(interface(temp1(temp4),x)); 
            end       
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        end 
    end 
     
         
    % loop through j in case there are several splits at different heights 
    for jl = 1:length(j) 
  
        %-------------------- displacement j - x -----------------------------------% 
        % depending on the size of split we have more than two segements split from 
        % segment j 
        for sl = 1:size(split{jl},1) 
            k = split{jl}(sl); 
            y = y + 1; 
            if j(jl) == elems(end) 
                if BC == 0  % adust the expression for w_0 
                    A(y,4*(j(jl)-1)+1:4*(j(jl)-1)+2) = [xc(x) xc(x)^3]; 
                else 
                    A(y,4*(j(jl)-1)+1:4*(j(jl)-1)+2) = [xc(x)^2 xc(x)^3]; 
                end 
            else 
                A(y,4*(j(jl)-1)+1:4*j(jl)) = [1 xc(x) xc(x)^2 xc(x)^3]; 
            end 
            A(y,4*(k-1)+1:4*k) = -[1 xc(x) xc(x)^2 xc(x)^3]; 
        end 
         
        %-------------------- rotation j - x ---------------------------------------% 
        % see displacemnt for comment 
        for sl = 1:size(split{jl},1) 
            k = split{jl}(sl); 
            y = y + 1; 
            if j(jl) == elems(end) 
                if BC == 0 % adust the expression for w_0 
                    A(y,4*(j(jl)-1)+1:4*(j(jl)-1)+2) = [1 3*xc(x)^2]; 
                else 
                    A(y,4*(j(jl)-1)+1:4*(j(jl)-1)+2) = [2*xc(x) 3*xc(x)^2]; 
                end 
            else 
                A(y,4*(j(jl)-1)+2:4*j(jl)) = [1 2*xc(x) 3*xc(x)^2]; 
            end 
            A(y,4*(k-1)+2:4*k) = -[1 2*xc(x) 3*xc(x)^2]; 
        end 
  
        %-------------------- Moment equilibrium -----------------------------------% 
        % depending on how many segments are split we have to take the sum of all of 
        % them 
        y = y + 1; 
        if j(jl) == elems(end) 
            if BC == 0 
                A(y,4*(j(jl)-1)+2) = -6*EI(j(jl))*xc(x); 
            else 
                A(y,4*(j(jl)-1)+1:4*(j(jl)-1)+2)=-[2*EI(j(jl)) 6*EI(j(jl))*xc(x)]; 
            end 
        else 
            A(y,4*(j(jl)-1)+3:4*j(jl)) = -[2*EI(j(jl)) 6*EI(j(jl))*xc(x)]; 
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        end 
        for sl = 1:size(split{jl},1) 
            k = split{jl}(sl); 
            A(y,4*(k-1)+3:4*k) = [2*EI(k) 6*EI(k)*xc(x)]; 
        end 
  
        %-------------------- Force equilibrium ------------------------------------% 
        % see moment equilibrium for comment 
        y = y + 1; 
        if j(jl) == elems(end) 
            A(y(jl),4*(j(jl)-1)+2) = -6*EI(j(jl)); 
        else 
            A(y,4*j(jl)) = -6*EI(j(jl)); 
        end 
        for sl = 1:size(split{jl},1) 
            k = split{jl}(sl); 
            A(y,4*k) = 6*EI(k); 
        end 
    end 
end 
  
%% --------------------------------- solve the system ---------------------------- %% 

% SVD approach 

tol = size(A,2)*2^-53; 
[U,S,V] = svd(A); 
Sinv = zeros(size(A,2)); 
for il = 1:size(A,2) 
    if (S(il,il)/S(1) < tol) | (S(il,il) == 0) 
        Sinv(il,il) = 0; 
    else 
        Sinv(il,il) = 1/S(il,il); 
    end 
end 
  
if size(A,1) == size(A,2) 
    % solution vector according to SVD 
    C = V*Sinv*U'*F; 
else 
    C = 0; 
    for il = 1:size(A,2) 
        C = C + dot(U(:,il),F)*Sinv(il,il)*V(:,il); 
    end 
end 
  
%% rearranging the coefficients, making them easier to discern 

Cmat = zeros(4,elemcount); 
for ind = 1:elemcount 
    if ind == elemcount 
        if BC == 0 
            Cmat(:,ind) = [0; C(4*(ind-1)+1); 0; C(4*(ind-1)+2)]; 
        else 
            Cmat(:,ind) = [0;0; C(4*(ind-1)+1:4*(ind-1)+2)]; 
        end 
    else 
        Cmat(:,ind) = C(4*(ind-1)+1:4*ind); 
    end 
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end 
  
end 
 
 
%% -------------------------- ERR_strain.m --------------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% this function has as only purpose the computation of the ERR for a delamination tip 

% based on the approach published by Andrews. To that end it accepts a matrix (tips) 

% and an indicator (indv) to alter a specific row in the matrix by adding DELa to it. 

% In an iterative process this delamination is brought to its original length and the 

% final result for the ERR is returned back to the calling function. 

% ATTENTION: NOW WE WILL ONLY EVER CHANGE JUST ONE DELAMINATION AT A TIME! 

% --------------------------------------------------------------------------------- % 

% Input: 

% - tips0 (matrix containing delamination length and position within the stack 

% - indv (points towards the entry of tips0 that needs to be altered 

% - contact (contact selection: 0 -> unconstrained; 1-> constrained) 

% - P (current applied force) 

% --------------------------------------------------------------------------------- % 

% Output: 

% - G, Energy Release Rate for the tip under consideration 

% - SIF, Stress Intensity factor 

%-----------------------------------------------------------------------------------% 

% - author: J.J. Kurpierz 

% - date: 16.10.2012 

% - version: V3 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of function 

function [G,SIF] = ERR_strainV5(tips0, indv, contact, P) 
%% Variable declaration 

global tar 
  
%% input 

% initial delamination extension. If this method is applied to all equal length 

% delaminations then simply add 4E0(5). Otherwise, take half the difference wrt the 

% next larger delamination 

err = 1; 
co = 1; 
% if tips0(indv,1) == max(tips0(:,1)) 

    da(co) = 2*tar.E0(7); 
% else 

%     % find next larger delamination size 

%     temp = sort(unique(tips0(:,1)), 'descend'); 

%     % compute the initial extension length 

%     da(co) = (temp(find(temp == tips0(indv,1))-1) - tips0(indv,1))/2 

%     if da(co) < 1e-6 

%          

% end 

  

while err > 1e-6 && da(co) > 1e-6 
    % extend the delaminations in question by da 
    tips = tips0; 
    tips(indv,1) = tips0(indv,1) + da(co); 
     
    % call on numbering_func in order to obtain the interface matrix, sorted tips, 
    % height vector and the number of elements 
  

    [interface, tipsn, seqk, height, elemcount] = interface_funcV3(tips); 
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    seqk{elemcount} = tar.seq; 
    height(elemcount) = tar.h; 
     
    %% segment and beam properties 

    % get the separate seqk and compute the D-matrix (reduced version) for it 
    for el = 1:elemcount 
        [K, ~] = ABDmat(tar.E0, seqk{el}, 0, 0); 
        % reduced bending matrix D due to unsymmetric and unbalanced laminates 
        Dred = K(4:6,4:6); 
        % compliance matrix 
        dred = inv(Dred); 
        % Youngs modulus of the composite plate, based on bending stiffness (see 
        % Kassapoglou or Reddy) 
        EI(el) = tar.w/dred(1,1); 
    end 
        
    % section flexural rigidity for constrained contact 
    n = size(interface,2) + 1; 
    for x = 1:n-1 
       EIsec(x) = sum(EI(unique(interface(:,x)))); 
    end 
    EIsec(n) = EI(end); 
     
    % tip location 
    xc = tar.L/2-flipud(unique(tipsn(:,1))); 
  
    %% solve the system of equations 

    % use "contact" as indicator to chose from the rigth function 
    if contact == 0 
        Cmat = SoE_ucbV2(interface,EI,xc,P); 
    else 
        Cmat = SoE_cbV2(interface,EIsec,xc,P); 
    end 
     
    %% Compute ERR based on the Strain Energy 

    % integration boundary 
    intbound = [0;xc;tar.L/2]; 
     
    % switch between the two contact cases 
    switch contact 
        case 0 
            % integration 
            for pl = 1:n 
                % first part involving the undamaged beam segment 
                if pl == 1 
                    Up(pl) = EI(end)*... 
                            (4*Cmat(3,end)^2*(intbound(pl+1)-intbound(pl))+... 
                             12*Cmat(3,end)*Cmat(4,end)*(intbound(pl+1)^2-intbound(pl)^2)+... 
                             12*Cmat(4,end)^2*(intbound(pl+1)^3-intbound(pl)^3)); 
                else 
                    segs = unique(interface(:,pl-1)); 
                    Upi = []; 
                    for sl = 1:length(segs) 
                        Upi(sl) = EI(segs(sl))*... 
                            (4*Cmat(3,segs(sl))^2*(intbound(pl+1)-intbound(pl))+... 
                             12*Cmat(3,segs(sl))*Cmat(4,segs(sl))*... 
                             (intbound(pl+1)^2-intbound(pl)^2)+... 
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                             12*Cmat(4,segs(sl))^2*(intbound(pl+1)^3-intbound(pl)^3)); 
                    end 
                    Up(pl) = sum(Upi); 
                end 
            end 
             
        case 1 
            for pl = 1:n 
                if pl == 1 
                    Up(pl) = EIsec(end)*... 
                    (4*Cmat(3,end)^2*(intbound(pl+1)-intbound(pl))+... 
                    12*Cmat(3,end)*Cmat(4,end)*(intbound(pl+1)^2-intbound(pl)^2)+... 
                    12*Cmat(4,end)^2*(intbound(pl+1)^3-intbound(pl)^3)); 
                else 
                    sec = pl-1; 
                    Up(pl) = EIsec(sec)*... 
                    (4*Cmat(3,sec)^2*(intbound(pl+1)-intbound(pl))+... 
                    12*Cmat(3,sec)*Cmat(4,sec)*(intbound(pl+1)^2-intbound(pl)^2)+... 
                    12*Cmat(4,sec)^2*(intbound(pl+1)^3-intbound(pl)^3)); 
                end 
            end 
             
    end 
  
    % total Strain Energy 
    U(co) = 1/2*sum(Up); 
  
    % compute the gradient based on a forward difference 
    if co > 2 
        dUda_old = (U(co-2)-U(co-1))/((da(co-2)-da(co-1))*tar.w); 
        dUda_new = (U(co-1)-U(co))/((da(co-1)-da(co))*tar.w); 
        err = abs((dUda_new-dUda_old)/dUda_old); 
    end 
    co = co + 1; 
    da(co) = 0.5*da(co-1); 
  
end 
G = dUda_new; 
  
%% compute the interface SIF for only the current delamination tip 

% first the "right" tip elements have to be chosen. To this end I need the 

% respective column of the interface matrix. I get that by looking at the order 

% of the current delamination within tips 

section = find(sort(unique(tips(:,1)), 'descend') == tips(indv,1)); 
% According to my thinking all I have to do now is to subtract column "order-1" 

% from column "order" and look at the non-zero items. THey indicate the newly 

% created longer delamination under consideration. Finally, I simply need the 

% element that those two are connected to. 

% keyboard 

if section == 1 
    temp = interface(:,section); 
else 
    temp = interface(:,section)-interface(:,section-1); 
end 
% filter out the only two unique elements right of the crack 
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temp1 = unique(interface(find(temp),section)); 
seg.k = temp1(1); 
seg.l = temp1(2); 
sec.kl = section; 
% find the element that both of these elements are connected to 

if section == 1 
    seg.j = elemcount; 
    sec.j = n; 
else 
    seg.j = unique(interface(find(temp),section-1)); 
    sec.j = section-1; 
end 
% keyboard 

SIF = SIF_funcV3(seg,sec,Cmat,height,seqk,xc(section)); 
  
end 
 
 
%% -------------------------- delam_growth_appdisp.m ----------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% function for determining the growth of a delamination under applied displacement. 

% This function will be called as soon as growth has been determined in any of the 

% delaminations. 

%-----------------------------------------------------------------------------------% 

% input: 

% - tips, 

% - indv, 

% - contact, 

% - P 

% - all input is given in the structures "dam" and "tar" 

%-----------------------------------------------------------------------------------% 

% output: 

% - new applied load P, Pnew 

% - new Energy Release Rate G 

% - updated dam.delams 

%-----------------------------------------------------------------------------------% 

% info: 

% - author: J.J. Kurpierz 

% - date: 14.11.2012 

% - Version: V1 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of fucntion 

function[Pnew, Gnew, SIFnew] = delam_growth_appdispV2(indv,contact,wc) 
  
%% Variable declaration 

global dam tar 
  
%% change in delamination length 

aext = tar.E0(7); 
Gnew = dam.G(indv,1); 
intnum = round(dam.delams(indv,2)/tar.E0(7)); 
while Gnew > tar.Gcr 
    % let the delamination in question grow 
    fprintf(1,'delamination at interface %i grows by one ply thickness\n', intnum) 
    dam.delams(indv,1) = dam.delams(indv,1)+aext; 
     
    % call interface_func to determine new interface 
    [interface, tips, seqk, height, elemcount] = interface_funcV3(dam.delams); 
    seqk{elemcount} = tar.seq; 
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    height(elemcount) = tar.h; 
  
    %% segment and beam properties 

    % for each beam segement the reduced bending stiffness matrix needs to be computed. 
    for el = 1:elemcount 
        [K, ~] = ABDmat(tar.E0, seqk{el}, 0, 0); 
        % reduced bending matrix D due to unsymmetric and unbalanced laminates 
        Dred = K(4:6,4:6); 
        % compliance matrix 
        dred = inv(Dred); 
        % Youngs modulus of the composite plate, based on bending stiffness (see 
        % Kassapoglou or Reddy) 
    %         E(el) = 12/(height(el)^3*dred(1,1)); 
        EI(el) = tar.w/dred(1,1); 
    end 
  
    % section flexural rigidity for constrained contact 
    n = size(interface,2) + 1; 
    for x = 1:n-1 
       EIsec(x) = sum(EI(unique(interface(:,x)))); 
    end 
    EIsec(n) = EI(end); 
  
    % x-coordinate for the crack tips 
    xc = tar.L/2-flipud(unique(tips(:,1))); 
  
    % solve the system of equations resulting from the unknown segment and section 
    % displacements, based on the chosen contact formulation.  
    % This will serve as the new compliance (see page 31 in NB 3). Use unit load as input 
    if contact == 0 
        Cmat = SoE_ucbV2(interface,EI,xc,1); 
    else 
        Cmat = SoE_cbV2(interface,EIsec,xc,1); 
    end 
  
    % displacement due to unit load 
    wc_u = Cmat(1,end-1) + Cmat(2,end-1)*tar.L/2 +... 
            Cmat(3,end-1)*(tar.L/2)^2 + Cmat(4,end-1)*(tar.L/2)^3; 
  
    % new applied load 
    Pnew = wc/wc_u; 
     
    %% check with Pnew and new length for G 

    [Gnew, SIFnew] = ERR_strainV5(dam.delams, indv, contact, Pnew); 
end 
  
end 
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%% -------------------------- SIF_func.m ----------------------------------------- %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This function computes the Stress Intensity Factor based on the expressions derived 

% by Suo & Hutchinson.  

%-----------------------------------------------------------------------------------% 

% input: 

% - j,k,l: indices for the three segments that make up the crack-tip element 

% - Cmat, matrix containing the displacement function coefficients 

% - seqk, cell containing the sublaminate layups for the definition of the bimaterial 

% constant 

% - height, vector containing heights of the segments 

%-----------------------------------------------------------------------------------% 

% output: 

% - SIF, vector containing KI and KII and bi-material constant epsilon 

%-----------------------------------------------------------------------------------% 

% author: J.J. Kurpierz 

% Version: V2 

% date: 15.11.2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% start of the function 

function[SIF] = SIF_funcV3(seg,sec,Cmat,height,seqk,xa) 
  
%% Variable declaration 

global tar sim 
  
%% preliminaries 

% define all the parameters needed based on the information about the 

% layer j 

[~, EngCst] = ABDmat(tar.E0,seqk{seg.j},0,0); 
E_0 = EngCst(2,1); 
  
% layer k 

[~, EngCst] = ABDmat(tar.E0,seqk{seg.k},0,0); 
E1 = EngCst(2,1); 
mu1 = EngCst(3,2); 
nu1 = EngCst(5,1); 
% layer l 

[~, EngCst] = ABDmat(tar.E0,seqk{seg.l},0,0); 
E2 = EngCst(2,1); 
mu2 = EngCst(3,2); 
nu2 = EngCst(5,1); 
  
Gam = mu1/mu2; 
kap1 = (3 - nu1)/(1+nu1);       % plane stress 
kap2 = (3 - nu2)/(1+nu2);       % plane stress 
alpha = (Gam*(kap2+1)-(kap1+1))/(Gam*(kap2+1)+(kap1+1)); 
beta = (Gam*(kap2-1)-(kap1-1))/(Gam*(kap2+1)+(kap1+1)); 
c1 = (kap1 + 1)/mu1; 
c2 = (kap2 + 1)/mu2; 
SIG = c2/c1; 
p = sqrt((1-alpha)/(1-beta^2)); 
epsi = 1/(2*pi)*log((1-beta)/(1+beta)); 
  
% define the geometry of the crack element 

h(1) = height(seg.k); 
h(2) = height(seg.l); 
I1 = 1/12*h(1)^3*tar.w; 
I2 = 1/12*h(2)^3*tar.w; 
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I_0 = 1/12*height(seg.j)^3*tar.w; 
  
if h(1) > h(2) 
    eta = h(2)/h(1); 
    h1d = h(2); 
else 
    eta = h(1)/h(2); 
    h1d = h(1); 
end 
  
% more paramters 

A = 1/(1+SIG*(4*eta + 6*eta^2 + 3*eta^3)); 
I = 1/(12*(1+SIG*eta^3)); 
gam = rad2deg(asin(6*SIG*eta^2*(1+eta)*sqrt(A*I))); 
omega = 52.1-3*eta; % in degrees 
  

% definition of Ci, i = 2,3 from Appendix III (Suo&Hutchinson) 

DEL = (1+2*SIG*eta+SIG*eta^2)/(2*eta*(1+SIG*eta)); 
I0 = 1/3*(SIG*(3*(DEL-1/eta)^2 - 3*(DEL-1/eta)+1) +... 
        3*DEL/eta*(DEL-1/eta) + 1/eta^3); 
C2 = SIG/I0*(1/eta - DEL + 1/2); 
C3 = SIG/(12*I0); 
  
%% Definition of SIF based on crack-tip resultant stresses 

% crack tip stress resultants 

if sim.contact == 0 
     
    M0 = -E_0*I_0*(2*Cmat(3,seg.j)+6*Cmat(4,seg.j)*xa)/tar.w; 
    if h(1) > h(2) 
        M1 = -E2*I2*(2*Cmat(3,seg.l)+6*Cmat(4,seg.l)*xa)/tar.w; 
    else 
        M1 = -E1*I1*(2*Cmat(3,seg.k)+6*Cmat(4,seg.k)*xa)/tar.w; 
    end 
else 
    M0 = -E_0*I_0*(2*Cmat(3,sec.j)+6*Cmat(4,sec.j)*xa)/tar.w; 
    if h(1) > h(2) 
        M1 = -E2*I2*(2*Cmat(3,sec.kl)+6*Cmat(4,sec.kl)*xa)/tar.w; 
    else 
        M1 = -E1*I1*(2*Cmat(3,sec.kl)+6*Cmat(4,sec.kl)*xa)/tar.w; 
    end 
end 
  
N_1 = -C2*M0/h1d; 
M_1 = M1 - C3*M0; 
  
KII = p/sqrt(2)*(N_1/sqrt(A*h1d)*sind(omega)-... 
    M_1/sqrt(I*h1d^3)*cosd(gam+omega)); 
KI = p/sqrt(2)*(N_1/sqrt(A*h1d)*cosd(omega)+... 
    M_1/sqrt(I*h1d^3)*sind(gam+omega)); 
  
K = (KI+KII*1i)*h1d^(-1i*epsi); 
G_k = (c1+c2)/(16*cosh(pi*epsi)^2)*abs(K)^2; 
  
SIF = [KI KII epsi h1d G_k]; 
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end 
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