
Details regarding the construction and execution
of protocols recipes

Sébastian de Bone1,2 and David Elkouss1,3

1 QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The
Netherlands

2 QuSoft, CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
3 Networked Quantum Devices Unit, Okinawa Institute of Science and Technology

Graduate University, Okinawa, Japan

1 Binary tree

Here, we present a method for converting GHZ creation and distillation protocols
into a set of ordered instructions. We consider GHZ creation protocols over N
parties in a network: the “network nodes” {ν(i)}Ni=1. The protocols are generated
by the dynamic program presented in the main paper and in Ref. [2], and have
the form of a directed binary tree. This means that each node in the tree is either
created from zero or two direct children of the graph. At the top of the binary
tree, we find the operation that creates the final GHZ state. At the end leaves of
each of the branches of the tree, we find the “elementary links” {ei}ki=1. These
are the Bell pairs created between two of the network nodes. The elementary
links do not have children. An example of a binary tree can be found in Fig. 1a.

The fusion operations {fi}Fi=1 and distillation operations {di}Di=1 in the tree
each have two children. A fusion operation creates a state |GHZn1+n2−1⟩ out of
two children |GHZn1⟩ and |GHZn2⟩, where |GHZn⟩ is a weight-n GHZ state. This
is possible if there is one network node that holds a qubit from both |GHZn1

⟩
and |GHZn2

⟩. A distillation operation, on the other hand, uses an entangled
state of the form |GHZn1

⟩ to non-locally measure a stabilizer operator of weight
n1 from Sn2 on a target state |GHZn2⟩ [5, 1, 4]. Here, the stabilizer operators of
|GHZn2⟩ are all operators

Sn2
= ⟨X1X2 . . . Xn2

, Z1Z2, Z2Z3, . . . , Zn2−1Zn2
⟩. (1)

We consider distillation as a probabilistic operation that only succeeds if the
measurement outcome is (−1)m = +1. In case of an outcome (−1)m = −1, we
reapply all operations in sub-tree of the operation d ∈ {di}Di=1—i.e., d itself and
all operations below it. More information about the specific operations applied
for fusion and distillation can be found in the main paper, or in Ref. [2].

Each binary tree satisfies D+ F = k − 1, where D, F and k are the number
of distillation operations, fusion operations, and elementary links, respectively.
Since creating a weight-n GHZ state requires a minimum of n− 2 fusion opera-
tions working on n− 1 elementary links, all additional fusion operations create
entangled states used for distillation purposes. Therefore, we use k (the number

2 Sébastian de Bone and David Elkouss

𝑥𝑥𝑥𝑥

𝑃𝑃

Elementary link between
nodes 𝑥𝑥 and 𝑦𝑦

Fusion in overlapping
node
Distillation by measuring
𝑃𝑃 on the left node

ABCD

ABC

𝑍𝑍2𝑍𝑍4

AB AC

CD

BD

A

C

B

D

1

11

1

Ti
m

e
ste

p
1

Ti
m

e
ste

p
2

Time step 1:
Time block AB:
CREATE LINK between qubits [A, 1] and [B, 1].
SWAP qubits [A, 1] ↔ [A, 2] and qubits [B, 1] ↔ [B, 2].
Time block CD:
CREATE LINK between qubits [C, 1] and [D, 1].
SWAP qubits [C, 1] ↔ [C, 2] and qubits [D, 1] ↔ [D, 2].

Time step 2:
Time block AC:
CREATE LINK between qubits [A, 1] and [C, 1].
(R1) FUSE by measuring qubits [A, 1] and keeping qubits [A, 2].
(R2) FUSE by measuring qubits [C, 1] and keeping qubits [C, 2].
Time block BD:
CREATE LINK between qubits [B, 1] and [D, 1].
(R3) DISTILL operation 𝑍𝑍2𝑍𝑍4 by measuring qubits [B, 1]

and [D, 1], and keeping qubits [B, 2] and [D, 2].

EVALUATE the success of R3 based on R1⊕R2⊕R3.
CORRECT qubit [C, 2] with operator 𝑋𝑋 conditioned on R1⊕R2.
CORRECT qubit [D, 2] with operator 𝑋𝑋 conditioned on R1⊕R2.

(a) Binary tree: (b) Timed binary tree: (c) Protocol recipe:
Modicum protocol

ABCD

ABC

𝑍𝑍2𝑍𝑍4

AB

AC

CD

BD

Fig. 1. (a) Binary tree with k = 4 found with the dynamic program of Ref. [2]. (b)
Identified time steps for the operations in this binary tree. (c) Identified protocol recipe
for this binary tree.

of elementary links in a binary tree) as a proxy for the amount of distillation
that takes place in a GHZ protocol.

2 Protocol recipe construction

In the presence of decoherence, the order in which the operations are applied
can have a strong impact on performance. Therefore, we convert the binary tree
of a GHZ creation protocol to a protocol recipe. This is a set of instructions
that describe what specific operations have to be applied on what qubits of
the network nodes. In this section, we discuss the algorithm we use to create a
protocol recipe. Both in this section and in the next section, we present a general
description of the algorithm in the main text and add specific details in shaded
text boxes.

The first step of the protocol recipe construction consists of ordering the
elementary links of the binary tree. For this, we follow a recursive approach.
We start at the top of the tree. At each step, we select the sub-tree with the
largest size, choosing the left one in case of ties. When we reach an elementary
link at one of the leaves of the tree, we add this link to an ordered list with
elementary links, together with all other non-overlapping elementary links that
can be carried out simultaneously.

For each elementary link e that we add to the list, we check if the parent
operation p of e can be applied. A parent can be applied if both of its children

Details regarding the construction and execution of protocols recipes 3

are contained in the list of operations. If p can be applied, we add p to the list
after e. Then we check if the parent of p can be applied; if it can be added, we
add it after p, etc.

For each operation in the list, we associate a set of instructions that are
physically possible with the target hardware. For example, we assume a single
“communication” qubit c(j) per node that can be used to perform operations, and

a fixed number Qj “memory” qubits {m(j)
q }Qj

q=1 that can be used to store states.
We also assume that a node can only be involved in one entanglement operation
at a time, and entanglement can only be created between two communication
qubits. For this reason, SWAP gates are necessary to free up the communication
qubits. For example, for a typical 2-to-1 Bell pair distillation step in the style
of the DEJMPS distillation protocol [3], we first create a Bell pair between two

communication qubits c(1) and c(2), we swap them to the memory qubits m
(1)
1

and m
(2)
1 , create a new Bell pair between communication qubits c(1) and c(2),

and then carry out the distillation circuit. If distillation succeeds, this leads to

a distilled Bell pair on memory qubits m
(1)
1 and m

(2)
1 . If we now want to further

use this distilled Bell pair as an ancillary state in a later operation, we typically
have to swap it back to the communication qubits.

We define No ⊆ {ν(i)}ni=1 as the subset of network nodes in which an
operation o takes place. For each elementary link operation e ∈ {ei}ki=1

considered, we identify the set Ee ⊂ {ei}ki=1, that for e′ ∈ Ee fulfills
Ne′ ∩ Ne = ∅, where ∅ is the empty set. The operations in Ee are all
elementary link operations that can be carried out simultaneously with
e. We store e and the operations in Ee together as a set se in the list
llink, where the elementary links e are ordered according to the recursive
binary tree approach discussed in the main text above.

Consequently, we identify a list l′link with subsets of link genera-
tion operations that can be carried out simultaneously. For each
element o ∈ llink, we identify a subset so of link generation operations
that can be carried out simultaneously with o. This subset can only
contain one operation per node in the network—i.e., there can, e.g.,
be only one link generation operation in so that involves network
node A, one link generation operation that involves network node B,
etc.. The operation o is, itself, also part of so. The identified subset so
is added to l′link. Each operation in llink is only added to one subset in l′link.

Next, we create a list of operations lops that contains all opera-
tions that need to be carried out—i.e., not just the elementary link
operations considered so far. This list is created by looping over the
subsets so ∈ l′link and by keeping track of the nodes’ qubit occupancy
during the operations that we add to lops (to identify the qubits on

4 Sébastian de Bone and David Elkouss

which the operations should take place). For each subset so ∈ l′link, the
link generation operations o ∈ so are added to lops. Subsequently, for
each o ∈ so, we check if we can perform its direct parent operation p in
the binary tree. This operation p is either a distillation operation or a
fusion operation. We check if, at this point, both direct children of p are
contained in lops. If this is the case, we add p to lops, and move on to
the direct parent of p and do the same—until we stumble upon a parent
node that does not have its two direct children contained in lops yet. For
each operation added to lops, we first check if it is necessary to free up
the communication qubits of the involved nodes, or swap back a state
to the nodes’ communication qubits. If one of those steps is necessary,
we add SWAP gate operations to lops before the actual operation. For
each fusion operation added to lops, we add information about what
correction operations we need to perform in case of an odd measurement
result. By default, this is a Pauli-X operator on all qubits of the right
child in the tree that are not part of the network node in which the
fusion operation takes place—so, e.g., for a fusion operation between
qubits in nodes ABC and CDE, this will be a Pauli-X operator on the
qubits in nodes D and E.

Once all operations are listed, we schedule them. The operation schedule
consists of a series of time steps, with each time step divided into different time
blocks. The time blocks are created such that they can be executed in parallel
in different, non-overlapping parts of the network. We schedule the operations
by looping over the list of operations, and, for each operation o, checking if o
can be placed in an existing time block. This is possible if the network nodes in
which o operates overlap with the network nodes in which the other operations
of the time block operate. If it is not possible to add o to an existing time block,
we create a new one. At the end of each time step, we add all required fusion
corrections, as well as distillation operations that need to be evaluated at the end
of the time step. The result is a structure that we refer to as a protocol recipe. An
example of a protocol recipe can be found in Fig. 1c and in the supplementary
document “Binary trees and protocol recipes best-performing protocols.pdf”.

We group the operations in lops into different time steps {s(τ)}Tτ=1

and time blocks {b(τ)i }
Bτ
i=1 within these time steps. Every time block

b ∈ {b(τ)i }
Bτ
i=1 has an associated subset Nb of network nodes in which its

operations are carried out. The time blocks are created by looping over
the operations o ∈ lops, for which we identify the subset No of network
nodes in which operations of o take place:

Details regarding the construction and execution of protocols recipes 5

1. We start at the time step s(τ
′) = s(T

′), where s(T
′) corresponds to

the last time step at this stage of the algorithm—i.e., the current size
T ′ ← |{s(τ)}τ |. If T ′ = 0, we create s(1) and set τ ′ ← 1.

2. We check if there is a time block b ∈ {b(τ
′)

i }Bτ′
i=1 that fulfills No ⊆ Nb.

a. If this is the case, we add o to this time block b, select the next
operation in lops and move to step 1.

b. If that is not the case, we check if there is at least one time block

b ∈ {b(τ
′)

i }Bτ′
i=1 that fulfills No ∩Nb ̸= ∅.

i. If this is the case, we create or move to the next time step
s(τ

′+1) and create a new time block b′′ in time step s(τ
′+1).

We set nb′′ ← no, add o to b′′, select the next operation in
lops and move to step 1.

ii. If that is not the case, we must have that No ∩Nb = ∅ holds

for all b ∈ {b(τ
′)

i }Bτ′
i=1. If τ

′ > 1 holds, we decrease τ ′ by one
and move back to the start of step 2. If τ ′ = 1 holds, we create
a new time block b′ in time step s(1), set Nb′ ← No, add o to
b′, select the next operation in lops and move to step 1.

To every time step s(τ), we add a list l
(τ)
corr of fusion corrections and a list

l
(τ)
eval of distillation operations that need to be applied and evaluated after
the time step. As mentioned earlier, fusion operators need corrections
when their full measurement outcome is odd. Typically, each correction
is not applied in the nodes where the fusion operation itself takes place.
Because the nodes in which the correction has to be applied are typically
part of a different time block of the time step, we collect all fusion
corrections and delay them until the end of a time step. Sometimes,
fusion corrections influence the outcome of distillation measurements.
This can occur if the fusion correction in a different time block does not
commute with one of the measurements of the distillation operation. If
this is the case, the success or failure of a distillation operation cannot
be determined in the time block itself. In that case, we also delay the
decision on whether or not distillation was successful to the end of a time
step, where all fusion measurement outcomes are available. Similarly,
it can occur that a fusion correction is altered by operations applied
between its associated fusion operation and the end of the time step. We
use standard commutation rules to modify these corrections (and their

dependencies) in l
(τ)
corr.

In more technical terms, the above is achieved by using a stan-
dard format for adding fusion correction operations that are newly
added to time step s(τ) in the list l

(τ)
corr—see the end of the first shaded

text box above for this standard format. This is possible since, by default,
every operation is always added to the end of a time block. Every time

6 Sébastian de Bone and David Elkouss

we add a new operation o to one of the time blocks of a certain time step
s(τ

′), we have to evaluate its influence on the existing fusion corrections
in l

(τ ′′)
corr for all time steps s(τ

′′) in the range τ ′ ≤ τ ′′ ≤ |{s(τ)}τ |. If o is
a distillation operation that does not commute with at least one fusion
correction in l

(τ ′′)
corr for τ ′ ≤ τ ′′ ≤ |{s(τ)}τ |, o is added to l

(τ ′′′)
eval and the

non-commuting fusion operation(s) are added to the outcomes required
to determine the success of o. Here, s(τ

′′′) corresponds to the latest time
step in the range τ ′ ≤ τ ′′′ ≤ |{s(τ)}τ | that contains fusion corrections
that do not commute with the distillation operation o.

3 Protocol recipe execution

In this section, we sketch the logic for the efficient simulation of a protocol recipe
in the form of Sec. 2.

The GHZ generation protocols considered are probabilistic. To avoid situa-
tions in which they do not finish within the coherence time, we impose a GHZ
cycle time after which the GHZ generation protocol is aborted. To be able to
deal with coherence times and the GHZ cycle time, we assign an internal time
variable to each network node. At the end of each time step, we synchronize the
time in all nodes and add memory decoherence associated with waiting times.
This corresponds to the protocol only moving to the next time step when all
operations in the current time step are finished. On top of that, if the GHZ state
is successfully created before the GHZ cycle time, we add memory decoherence
until the GHZ cycle time is reached.

During normal execution of a protocol recipe, we say that we are in “execution
mode”. If, in execution mode, a distillation operation is unsuccessful, the target
state of the distillation operation has to be recreated from scratch. In that case,
we have to track back to an earlier stage in the protocol. If we started creating
the state in the same time block as where the distillation failure occurred, we
can simply try to recreate the state without notifying the nodes outside the time
block. If this is not the case, and we have to move back to an earlier time step, all
network nodes are notified, and the protocol resets to the earlier time step. This
process also involves removing all states that “sit in the way” for recreating the
failed state—i.e., that use memory qubits required for regenerating this state.
On the other hand, all states on memory qubits that are not needed are kept, so
that, when we return to the point where the distillation failure occurred, these
states are still there and can be used in the remainder of the protocol. This also
includes distillation operations that are only partially carried out.

If it is necessary to move back to an earlier time step after a distillation
failure, we store the time tfail at which the measurement result was known, and
enter “reconstruction mode”. In reconstruction mode, we (re)apply all operations
in this time step until tfail is reached—i.e., if they were already simulated before
the distillation operation failed, we make sure all probabilistic operations get

Details regarding the construction and execution of protocols recipes 7

the same outcome as in the original execution. In this mode, also operations
in other time blocks are carried until tfail. We then move back to an earlier
time step of the protocol recipe in execution mode in order to reconstruct the
failed state(s)—i.e., we move back to the “failure-reset-level” associated with
this distillation operation.

As soon as we have successfully reconstructed the state(s) associated with
the failed distillation operation(s), we proceed with the rest of the protocol. This
means that, in execution mode, we always have to make use of a data structure
that indicates which operations need to be carried out and which operations
need to be skipped. This is necessary to correctly deal with the recreation of
states that suffered from failed distillation earlier in the execution process. For
example, after moving back to a failure reset level, only operations needed for
recreating the state of the failed distillation step have to be reapplied.

Specifically, we make use of the objects lrecreate and lclear to keep track
of which operations need to be applied in execution mode. During
protocol recipe execution, we only apply operations contained in the last
object of lrecreate, and skip all other operations that we encounter. The
structure lclear contains information on when the last object in lrecreate
can be removed—e.g., if we have successfully recreated a state with a
distillation operation that failed at an earlier stage of the protocol, we
remove the associated object from lrecreate. The second-to-last object in
lrecreate then becomes the last object and determines which operations
are executed and skipped. The structure lrecreate starts out empty—for
an empty lrecreate all operations are applied in execution mode.

In reconstruction mode, we deterministically reapply all time blocks

{b(τ
′)

i }Bτ′
i=1 in this time step τ ′ until they reach time tfail. Note that,

because a distillation operation contains a set of operations that need
to be carried out locally in the network nodes—and not necessarily
simultaneously in all nodes—it could occur that only part of a full
distillation operation is executed before tfail. If this is the case, we
typically finish the rest of the operation when we reach this stage in
the protocol again after fully recreating the failed state. Every time we
enter reconstruction mode, an empty list lskip is initialized. In this list,
we collect all operations in the time step that are skipped because they
fall outside the time tfail.

When, in reconstruction mode, the end of the time step is reached,
we calculate a list lreset with all operations that have to be reapplied
because of failed operation(s) in the last time step. This list is calculated
using Alg. 1. It contains all operations in the sub-trees of the failed
distillation operation(s). On top of that, it can occur that one or more of

8 Sébastian de Bone and David Elkouss

their parents are also executed at this point. In that case, these parents
also need to be reapplied to recover the state at the end of this time
step. To evaluate what parent operations need to be reapplied, we keep
track of a “real-time” dictionary δqubits that describes what binary tree
states currently sit on which network node qubits. On top of that, we
also add all operations in lskip to lreset, but we exclude SWAP operations
that act on states not contained in lreset. Lastly, we also make sure to
recreate states that are present on network node qubits that need to be
empty to reapply the operations in lreset: these states—including their
sub-trees and (possibly) parents—are also added to lreset. We define the
failure-reset-level as the operation ofrl ∈ lreset that appears first in the
protocol recipe. We add lreset to the end of lrecreate and store information
in lclear that tells us we can remove this list from lrecreate as soon as we
reach the end of this time step again. After that, we tell the algorithm
to go back to operation ofrl in the protocol recipe and continue from there.

Below, we present a more precise description of the execution of a
protocol recipe in the presence of a GHZ cycle time tGHZ. We denote the
“local” time in a network node ν ∈ {ν(i)}ni=1 by tν .

1. We set tν ← 0 in all nodes ν ∈ {ν(i)}ni=1. We create empty structures
lrecreate and lclear. We select execution mode.

2. We select τ ′ ← 1 and select the first time step s(τ
′). We set i ← 1

and select the first time block b
(τ ′)
i of time step s(τ

′).

3. We select the first operation o in time block b
(τ ′)
i .

4. The operation o is only applied if it is contained in the last list
of lrecreate or if lrecreate is empty. Without loss of generality, we as-

sume that o performs operations in network nodes No = {µ(o)
j }j with

t
µ
(o)
1
≤ t

µ
(o)
2
≤ . . ., for µ

(o)
j ∈ {ν(i)}ni=1.

a. If, for any of the involved nodes µ ∈ No, tµ ≥ tGHZ holds after
o would have taken place, the operations of o in node µ are not
executed, and we “switch off” node µ, as it now has reached the
GHZ cycle time. If all nodes ν ∈ {ν(i)}ni=1 have reached the GHZ
cycle time, the full protocol is aborted.

b. If the operation creates an entangled link between network nodes

µ ≡ µ
(o)
1 and µ′ ≡ µ

(o)
2 , we set tµ ← tµ′ .

c. If we are in reconstruction mode, we check if tµ ≥ tfail holds for
all of the involved nodes µ ∈ No. If that is the case, we skip (the
part of) operation o in node µ and add o to lskip.

d. We carry out o in the nodes µ ∈ No that are not yet switched off
and (in case we are in reconstruction mode) have not yet reached
tfail. We add the time it takes to perform this operation to tµ of
the involved network node µ.

Details regarding the construction and execution of protocols recipes 9

e. As long as o is the last element of lclear, we remove the last ele-
ments of lclear and lrecreate.

f. If o is a distillation operation and its success can be evaluated
here, we do so:
i. If the distillation operation succeeds, we proceed as if nothing

happened.
ii. If the distillation operation fails, we calculate lreset and ofrl for

just the operation o using the version of δqubits at the current
stage of the protocol and Alg. 1.

iii. In case of a failed distillation operation, if ofrl is an operation

in the same time block b
(τ ′)
i as o, we add o at the end of lclear

and add lreset at the end of lrecreate. We then set o← oflr and
move back to the beginning of step 4.

iv. In case of a failed distillation operation, if ofrl is in a different

time block as b
(τ ′)
i , and we are not in reconstruction mode,

we set tfail to the time when the full measurement result of o
was known. We create a list lfail and add o to this list. The
list lfail contains failed distillation operations in the current
instance of reconstruction mode. We set lskip to the empty
list. We reset lrecreate, lclear and δqubits to their values at the
start of this time step τ ′, set i ← 1 to select the first time

block b
(τ ′)
i of this time step τ ′. We enter reconstruction mode

and move back to step 3.
v. In case of a failed distillation operation, if ofrl is in a different

time block as b
(τ ′)
i , and we are already in reconstruction mode,

we check if o is in lfail. If that is the case, we proceed as if
nothing happened. If that is not the case and the time at
which the full measurement result of o was known is smaller
than tfail, we reset tfail to this earlier time, add o to lfail, reset
lrecreate, lclear and δqubits to their values at the start of this
time step τ ′, set i back to i← 1 to select the first time block

b
(τ ′)
i of this time step τ ′, and move back to step 3. If o is not
in lfail, but the time at which the full measurement result of
o was known exceeds tfail, we add o to lfail and proceed as if
nothing happened.

If o is not the last operation in b
(τ ′)
i , we select the next operation in

b
(τ ′)
i as the new operation o and move back to start of step 4. If o is

the last operation in b
(τ ′)
i and i < Bτ ′ , we increase i by one and move

back to step 3. If o is the last operation in b
(τ ′)
i and i = Bτ ′ holds,

we move to step 5.

5. We have reached the end of the time step. As long as this time step
is the last element of lclear, we remove the last elements of lclear and

10 Sébastian de Bone and David Elkouss

lrecreate. Then, if we are not in reconstruction mode, we move to step
6. Otherwise—i.e., if we are in reconstruction mode—we add this
time step at the end of lclear. On top of that, we calculate lreset and
ofrl with Alg. 1, using lfail as the list of operations in Alg. 1. Lastly,
we add each operation o′ ∈ lskip to lreset as well. Here, we exclude
operations o′ ∈ lskip that are SWAP gates swapping a state that is
not contained in lreset. We enter execution mode, set o ← ofrl and
move back to step 4.

6. We evaluate the full results of distillation operations o′′ ∈ l
(τ ′)
eval. Here,

if lrecreate is not empty, we skip distillation operations that are not
part of the last list in lrecreate.
a. As soon as one distillation operation o′′ fails, we add this location

in the protocol recipe at the end of lclear, calculate lreset and ofrl
with Alg. 1 for just operation o′′, and add lreset at the end of
lrecreate. We set o← ofrl and move back to step 4.

b. If all distillation evaluations succeed, we move to step 7.

7. We evaluate and carry out the fusion corrections in l
(τ ′)
corr.

8. If τ ′ < T holds, we increase τ ′ by one, set i ← 1, set tν ← maxν′ tν′

for all ν, ν′ ∈ {ν(i)}ni=1, and move to step 3. If τ ′ = T holds, we set
tν ← maxν′ tν′ for all ν, ν′ ∈ {ν(i)}ni=1 and stop the protocol.

References

1. Aschauer, H., Dür, W., Briegel, H.J.: Multiparticle entanglement purification for
two-colorable graph states. Physical Review A 71(1), 012319 (2005)

2. de Bone, S., Ouyang, R., Goodenough, K., Elkouss, D.: Protocols for Creating and
Distilling Multipartite GHZ States With Bell Pairs. IEEE Transactions on Quantum
Engineering 1, 1–10 (2020). https://doi.org/10.1109/TQE.2020.3044179

3. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera,
A.: Quantum privacy amplification and the security of quantum cryptogra-
phy over noisy channels. Physical Review Letters 77(13), 2818–2821 (1996).
https://doi.org/10.1103/PhysRevLett.77.2818

4. Goyal, K., McCauley, A., Raussendorf, R.: Purification of large bi-
colorable graph states. Phys. Rev. A 74(3), 032318 (Sep 2006).
https://doi.org/10.1103/PhysRevA.74.032318

5. Maneva, E.N., Smolin, J.A.: Improved two-party and multi-party purification pro-
tocols. Contemporary Mathematics 305, 203–212 (2002)

Details regarding the construction and execution of protocols recipes 11

Algorithm 1: Pseudo-code used to identify the failure-reset-level and a
list of operations that need to be re-applied in case of a failed distillation
attempt.

Data: ld: list of operations that need to be re-applied
δqubits: dictionary with states currently stored on qubits
Binary tree of the protocol
Protocol recipe

Result: Failure-reset-level of operations in ld
List of operations that have to be reapplied

1 lreset ← ∅
2 while ld ̸= ∅ do
3 for o ∈ ld do
4 Add o to lreset.
5 Add all binary tree children of o to lreset.
6 Add all parents of o that are currently present in δqubits to lreset,

including all their children in the binary tree

7 Identify all operations locc that sit on qubits in δqubits that need to be
empty if we want to reapply the operations in lreset.

8 ld ← locc

9 Identify the first operation ofrl ∈ lreset in the protocol recipe.
10 return ofrl, lreset.

