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1 Introduction

Hysteresis is a phenomenology commonly encountered in very diverse engineering and
science disciplines, ranging from solid mechanics, electromagnetism and aerodynamics [1,
2, 3] to biology, ecology and psychology [4, 5, 6]. The defining property of a hysteretic
system is the persistence of an input-output loop as the input frequency approaches
zero [7]. Hysteretic systems are inherently nonlinear, as the quasi-static existence of a
loop requires an input-output phase shift different from 0 and 180 degrees, which are the
only two options offered by linear theory. The root cause of hysteresis is multistability [8].
A hysteretic system possesses multiple stable equilibria, attracting the output depending
on the input history. In this sense, it is appropriate to refer hysteresis as system nonlinear
memory.

This document describes the synthesis of noisy data exhibiting hysteresis behaviour car-
ried out by combining the Bouc-Wen differential equations (Section 2) and the Newmark
integration rules (Section 3). User guidelines to an accurate simulation are provided in
Section 4. The test signals and the figures of merit that are used in this benchmark are
presented in Section 5. Anticipated nonlinear system identification challenges associated
with the present benchmark are listed in Section 6.
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2 The Bouc-Wen model of hysteresis

The Bouc-Wen model [9, 10] has been intensively exploited during the last decades to
represent hysteretic effects in mechanical engineering, especially in the case of random
vibrations. Extensive literature reviews about phenomenological and applied aspects re-
lated to Bouc-Wen modelling can be found in Refs. [11, 12].

The vibrations of a single-degree-of-freedom Bouc-Wen system, i.e. a Bouc-Wen oscillator
with a single mass, is governed by Newton’s law of dynamics written in the form [10]

mL ÿ(t) + r(y, ẏ) + z(y, ẏ) = u(t), (1)

where mL is the mass constant, y the displacement, u the external force, and where an
over-dot indicates a derivative with respect to the time variable t. The total restoring
force in the system is composed of a static nonlinear term r(y, ẏ), which only depends
on the instantaneous values of the displacement y(t) and velocity ẏ(t), and of a dynamic,
i.e. history-dependent, nonlinear term z(y, ẏ), which encodes the hysteretic memory of
the system. In the present study, the static restoring force contribution is assumed to be
linear, that is

r(y, ẏ) = kL y + cL ẏ, (2)

where kL and cL are the linear stiffness and viscous damping coefficients, respectively.
The hysteretic force z(y, ẏ) obeys the first-order differential equation

ż(y, ẏ) = α ẏ − β
(
γ |ẏ| |z|ν−1 z + δ ẏ |z|ν

)
, (3)

where the five Bouc-Wen parameters α, β, γ, δ and ν are used to tune the shape and
the smoothness of the system hysteresis loop. Table 1 lists the values of the physical
parameters selected in this study. The linear modal parameters deduced from mL, cL and
kL are given in Table 2. Fig. 1 (a) illustrates the existence of a non-degenerate loop in the
system input-output plane for quasi-static forcing conditions. In comparison, by setting
the β parameter to 0, a linear behaviour is retrieved in Fig. 1 (b). The excitation u(t) in
these two figures is a sine wave with a frequency of 1 Hz and an amplitude of 120 N . The
response exhibits no initial condition transients as it is depicted over 10 cycles in steady
state.

Parameter mL cL kL α β γ δ ν
Value (in SI unit) 2 10 5 104 5 104 1 103 0.8 -1.1 1

Table 1: Physical parameters of the Bouc-Wen system.

Parameter Natural frequency ω0 (Hz) Damping ratio ζ (%)
Value 35.59 1.12

Table 2: Linear modal parameters of the Bouc-Wen system.

8

maarten.schoukens
Rectangle

maarten.schoukens
Text Box
Workshop on Nonlinear System Identification Benchmarks
April 25-27, 2016, Brussels, Belgium
     



3

−150 −100 −50 0 50 100 150
−1

−0.5

0

0.5

1

Input (N)

O
u
tp

u
t 
(m

m
)

(a)

−150 −100 −50 0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

Input (N)

O
u
tp

u
t 
(m

m
)

(b)

Figure 1: Hysteresis loop in the system input-output plane for quasi-static forcing con-
ditions. (a) Non-degenerate loop obtained for the parameters in Table 1; (b) linear be-
haviour retrieved when setting the β parameter to 0.

3 Time integration

The Bouc-Wen dynamics in Eqs. (1) and (3) can be effectively integrated in time using a
Newmark method. Newmark integration relies on one-step-ahead approximations of the
velocity and displacement fields obtained by applying Taylor expansion and numerical
quadrature techniques [13]. Denoting by h the integration time step, these approximation
relations write

ẏ(t+ h) = ẏ(t) + (1− a) h ÿ(t) + a h ÿ(t+ h)
y(t+ h) = y(t) + h ẏ(t) +

(
1
2
− b
)
h2 ÿ(t) + b h2 ÿ(t+ h).

(4)

Parameters a and b are typically set to 0.5 and 0.25, respectively. Eqs. (4) are herein
enriched with an integration formula for the variable z(t), which takes the form

z(t+ h) = z(t) + (1− c) h ż(t) + c h ż(t+ h), (5)

where c, similarly to a, is set to 0.5. Based on Eqs. (4) and (5), a Newmark scheme
proceeds in two steps. First, predictions of ẏ(t+ h), y(t+ h) and z(t+ h) are calculated
assuming ÿ(t + h) = 0 and ż(t + h) = 0. Second, the initial predictors are corrected via
Newton-Raphson iterations so as to satisfy the dynamic equilibria in Eqs. (1) and (3).

4 User guidelines to an accurate simulation

The Newmark integration of the Bouc-Wen dynamics in Eqs. (1) and (3) is implemented
in the Matlab encrypted p-file BoucWen NewmarkIntegration.p. This function features
5 inputs, namely:
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• the integration time step h;

• the external force time history u(t);

• the initial value of the displacement y(t = 0);

• the initial value of the velocity ẏ(t = 0);

• the initial value of the hysteretic force z(t = 0).

The single output of the function is the displacement time history y(t).

Based on the authors’ experience with the Newmark integration of the Bouc-Wen system
of Section 2, the following guidelines are formulated:

• it is suggested to consider a working sampling frequency of 750 Hz in order to
properly observe the harmonic components generated by the nonlinearity;

• it is strongly advised to upsample the input force u(t) by a factor 20 during time
integration to guarantee the accuracy of the resulting displacement time series. This
comes down to setting the integration sampling frequency, i.e. 1/h, to 15000 Hz;

• after integration, the output sequence y(t) may be low-pass filtered and downsam-
pled using the Matlab command decimate. Note that this command belongs to the
Matlab Signal Processing toolbox;

• low-pass filtering may be achieved using a 30-th order FIR filter (argument ‘fir’ of
the decimate command), paying attention to the inherent edge effects of the filter;

• the decimate command may be called several times breaking the downsampling
argument, e.g. 20, into its prime factors, e.g. 2 - 2 - 5, to enhance numerical
precision;

• initial conditions on y(t), ẏ(t) and z(t) are usually set to 0.

The minimal working example file BoucWen ExampleIntegration.m implements all these
guidelines. In this example, a multisine excitation [14] is applied to the Bouc-Wen system
considering all excited frequencies in the 5 – 150 Hz band and a frequency resolution f0 =
fs/N ∼= 0.09Hz, given a sampling frequency fs = 750Hz and a number of time samples
N = 8192. The root-mean-squared amplitude of the input is 50 N and 5 output periods
are simulated. The sampling rate during integration is set to 15000 Hz. The synthesised
displacement time history is low-pass filtered and downsampled back to 750 Hz.

In more details:

• the working and integration sampling frequencies are defined in section Time integration

parameters on line 10;
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• the excitation signal is designed in section Excitation signal design on line 17.
Note that the Newmark simulation algorithm supports, in principle, all types of
input time series;

• initial conditions are set on lines 43, 44 and 45;

• time integration is run on line 48;

• low-pass filtering and downsampling are carried out in section Low-pass filtering

and downsampling on line 51;

• the edge effects of the low-pass filter are addressed by adding an extra period during
time integration (see lines 28 and 29) and removing it afterwards (see lines 63, 64
and 65).

Note that Gaussian noise band-limited in 0 – 375 Hz is automatically added to the
synthesised measurement of y(t) considering a root-mean-squared amplitude of 8 10−3

mm. This provides a realistic signal-to-noise ratio of about 40 dB at 50 N excitation
level. The input time series u(t) is assumed to be noiseless.

Fig. 2 (a) displays the calculated system output. The exponential decay of the system
transient response is plotted in Fig. 2 (b) by subtracting the last synthesised period from
the entire time record. This graph indicates that transients due to initial conditions only
affect the first period of measurement, and that the applied periodic input results in a
periodic output. It also demonstrates the high accuracy of the Newmark integration, as
the transient response reaches the Matlab precision of -313 dB in steady state. Remark
that, in this particular case, no noise was added to the output to focus on integration
accuracy.

5 Model test and figure of merit

Two fixed test datasets are provided through the benchmark meeting website: a random
phase multisine and a sine-sweep signal. The test datasets are noiseless and a sampling
frequency of 750 Hz is considered. The random phase multisine dataset contains one
steady-state period of 8192 samples. The excited band encompasses all frequencies in 5 –
150 Hz, and the RMS input value is 50 N . The sine-sweep dataset is not in steady state,
the simulation started with initial conditions equal to zero. In this case, the amplitude of
the input is 40 N , and the frequency band from 20 to 50 Hz is covered at a sweep rate
of 10 Hz/min. These test sets function as a target for the obtained model, the model
should perform as good as possible on these test datasets. The goal of the benchmark is
to estimate a good model on the estimation data. The test data should not be used for
any purpose during the estimation.

We expect all participants of the benchmark to report the following figure of merit for all
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Figure 2: System output calculated in response to a multisine input band-limited in 5
– 150 Hz. (a) Output over 5 periods, with one specific period highlighted in grey; (b)
output in logarithmic scaling (in black) and decay of the transient response (in blue).

test datasets to allow for a fair comparison between different methods:

eRMSt =

√√√√1/Nt

Nt∑
t=1

(ymod(t)− yt(t))2, (6)

where ymod is the modeled output, yt is the output provided in the test dataset, Nt is the
total number of points in yt.

Also mention whether the modeled output ymod is obtained using simulation (only the
test input ut is used to obtain the modeled output ymod(t) = F (ut(1), . . . , ut(t))) or
prediction (both the test input ut and the past test output yt are used to obtain the
modeled output ymod(t) = F (ut(1), . . . , ut(t), yt(1), . . . , yt(t − 1))). Provide both figures
of merit (simulation and prediction) if the identified model allows for it.

6 Nonlinear system identification challenges

We anticipate the Bouc-Wen benchmark to be associated with 4 major nonlinear system
identification challenges:

• it possesses a nonlinearity featuring memory, i.e. a dynamic nonlinearity;

• the nonlinearity is governed by an internal variable z(t), which is not measurable;
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• the nonlinear functional form in Eq. (3) is nonlinear in the parameter ν;

• the nonlinear functional form in Eq. (3) does not admit a finite Taylor series expan-
sion because of the presence of absolute values.
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