
Efficient sequential neural network based on spatial-temporal attention and

linear LSTM for robust lane detection using multi-frame images

This is the source code description for Spatial-Temporal Attention Integrated Sequential Neural

Network Model which is used for robust lane detection using multi continuous image frames.

1. Background and Summary

Lane detection serves as a fundamental task for automated vehicles and Advanced Driver Assistance Systems.

However, existing lane detection methods often fail to deliver the versatility of accurate, robust, and real-time

compatible lane detection, especially under challenging driving scenes. Available vision-based methods in the

literature frequently overlook critical regions of the image and their spatial-temporal salience regarding the

detection results, leading to poor performance in peculiar difficult circumstances (e.g., serious occlusion, dazzle

lighting). To address these limitations, this study introduces a novel spatial-temporal attention mechanism that

can focus on key features of lane lines and exploit salient spatial-temporal correlations among continuous image

frames to enhance the accuracy and robustness of lane detection. Under the standard encoder-decoder structure

and with the implementation using common neural network backbones, efficient sequential neural network

models are developed incorporating the proposed spatial-temporal attention mechanism. The developed models

are trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the

strength and robustness of the developed model outperforming available state-of-the-art methods across various

testing scenarios. Furthermore, with the spatial-temporal attention mechanism, the developed sequential neural

network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to

baseline sequential models, highlighting their computational efficiency and real-world applicability.

2. Overall architecture

Fig. 1. The architecture of the proposed model.

An architecture overview of the proposed method is illustrated in Fig. 1.

3. Spatial-temporal attention mechanism

The proposed attention module is developed to mimic human visual cognitive attention which demonstrates

the ability to focus on important parts and ignore minor parts. The attention module helps the neural network

learn to focus on important frames and salient regions of each frame by assigning different weights to each image

frame and particular regions of each frame. With the help of the embedded temporal feature extractor, e.g.,

LSTM or Gated Recurrent Unit (GRU), the attention module can also extract important temporal dependencies

over the input consecutive image frames.

As illustrated in Fig. 1, the attention module is applied when the input image sequences are downsized and

the features are extracted by a series of convolution layers in the encoder. The attention module integrates the

extracted features from the encoder and the hidden outputs produced by the embedded temporal feature extractor,

e.g., LSTM/GRU. The LSTM/GRUs’ hidden outputs of the very last previous time step and the input feature

maps at the current time step are combined using a set of attention weights. Activation of these weights can then

be obtained to learn which image frame and which specific regions are important for the lane detection task. The

weighted sum of input feature maps highlights the salient features, which are then processed by the temporal

feature extractor to produce the output at the current time step and updated hidden state. All the attention weights

can be trained simultaneously together with other neural network layer weights using the backpropagation

mechanism. Equations (1)-(13) provide a formal mathematical description of the attention mechanism as

described above.

The output of the final downsized convolutional block at time 𝑡 for the 𝑛-th frame (i.e., timestep 𝑛 within the

image sequence) is denoted as 𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+𝑛)

, where 𝑛 = {1, 2, , . . , 𝑁}, and 𝑁 is the number of frames in the sequence,

(in this implementation 𝑁 = 5). The input sequence for the attention module is therefore defined as

{𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+1)

, 𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+2)

, . . , 𝑥𝑑𝑜𝑤𝑛4
(𝑡)

}. Please note there are two distinct temporal increments. The increment in 𝑛

corresponds to processing the subsequent image in the input sequence; where an increment in time 𝑡 reflects the

real-world temporal progression, i.e., moving to the next input sequence. Then, within a certain selected sequence,

the following computations are performed:

𝑥(𝑡−𝑁+𝑛) = 𝐶𝑜𝑛𝑣 (𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+𝑛)

, 𝑘𝑖𝑛) (1)

𝑧(𝑡−𝑁+𝑛) = (𝑈 ∙ 𝑥(𝑡−𝑁+𝑛)) + (𝐻 ∙ ℎ(𝑡)) (2)

𝑤(𝑡−𝑁+𝑛) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ∙ 𝑧(𝑡−𝑁+𝑛)) (3)

𝑥(𝑡) = ∑ 𝑤(𝑡−𝑁+𝑛) ∙ 𝑥(𝑡−𝑁+𝑛)𝑁
𝑛=1 (4)

Here, “Conv” denotes the convolution operation, while “+” represents the element-wise addition operation.

𝑘𝑖𝑛 is a convolution layer with a kernel of size of 1 × 1 and 1 channel (as indicated by In_Attention_Conv_5_1

in Table 1). The matrices 𝑈, 𝐻, 𝑊 are the learnable weights that can be configured as trainable vectors of size 1

× 1 or 1 × 128, or as a trainable fully connected layer of size 1 × 128. 𝑥(𝑡−𝑁+𝑛) and 𝑧(𝑡−𝑁+𝑛) represent the

intermediate outputs. 𝑤(𝑡−𝑁+𝑛) denotes attention weights obtained from softmax operation, and 𝑥(𝑡) is the

attention-based weighted average output aggregating information across the sequence

{𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+1)

, 𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+2)

, . . , 𝑥𝑑𝑜𝑤𝑛4
(𝑡)

}.

After processing the N images, and getting the weighted average 𝑥(𝑡) for the selected sequence, the following

computations are carried out:

𝑜(𝑡), ℎ(𝑡+1) = 𝐹(𝑥(𝑡), ℎ(𝑡)) (5)

𝑥𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣(𝑜(𝑡), 𝑘𝑜𝑢𝑡) (6)

where F is an embedded temporal feature extractor; ℎ(𝑡) is the hidden state vector initialized as ℎ(0) = 𝟎 (zero

vector) when 𝑡 = 0 and ℎ(𝑡) will be updated with its new inheritor after the selected sequence is fully processed

as in equation (5); 𝑜(𝑡) is the output from F, which is then expanded to 512 channels by outconv layer 𝑘𝑜𝑢𝑡; 𝑘𝑜𝑢𝑡

has a kernel size of 1 × 1 and 512 channels (indicated by Out_Attention_Conv_5_2 in Table 1); 𝑥𝑜𝑢𝑡 is the final

output of the attention module which is then transferred to the decoder module.

The temporal feature extractor F can be LSTM or GRU. Take LSTM for an example, an LSTM unit is

visualized in Fig. 2. Here, i, f, and o stand for input gate, forget gate, and output gate, respectively. The input (IN)

is summed with a memory cell (𝐶) and a new-memory cell (𝐶̃). The output of 𝐶̃ is summed with a memory cell

via forget gate (𝑓). The output (𝑂𝑈𝑇) is obtained from 𝐶 via the activation function and output gate (𝑜).

Fig. 2. An illustration of the Long Short Term Memory unit (Chung et al., 2014).

The key formulations of the LSTM are shown by the following equations:

𝑓(𝑡) = 𝜎 (𝑏𝑓 + 𝑃𝑓𝑥(𝑡) + 𝑄𝑓ℎ(𝑡)) (7)

𝑖(𝑡) = 𝜎 (𝑏𝑖 + 𝑃𝑖𝑥(𝑡) + 𝑄𝑖ℎ(𝑡)) (8)

𝑐(𝑡) = 𝑓(𝑡) ⊙ 𝑐(𝑡−1) + 𝑖(𝑡) ⊙ 𝑐̃(𝑡) (9)

𝑐̃(𝑡) = 𝑔 (𝑏𝑐 + 𝑃𝑐𝑥(𝑡) + 𝑄𝑐ℎ(𝑡)) (10)

ℎ(𝑡+1) = 𝑜(𝑡) ⊙ 𝑔(𝑐(𝑡)) (11)

𝑜(𝑡) = 𝜎(𝑏𝑜 + 𝑃𝑜𝑥(𝑡) + 𝑄𝑜ℎ(𝑡)) (12)

where 𝑥(𝑡) serves as the current input vector, ℎ is the current hidden state vector as explained before, 𝑔 is the

typically hyperbolic tangent function, 𝜎 is the activation function, and ⊙ is the Hadamard (element-wise)

multiplication. 𝑏𝑓 , 𝑃𝑓 , 𝑄𝑓 are biases, input weights and recurrent weights for the forget gates; 𝑏𝑖, 𝑃𝑖, 𝑄𝑖 are

biases, input weights and recurrent weights for the input gate; 𝑏𝑐 , 𝑃𝑐 , 𝑄𝑐 are biases, input weights and recurrent

weights for the current value of the memory state 𝑐(𝑡). 𝑐̃(𝑡) is the internal candidate memory state. 𝑜(𝑡) is the

output at the output gate. 𝑏𝑜, 𝑃𝑜, 𝑄𝑜 are biases, input weights and recurrent weights for the output gate.

The attention model is implemented after the encoder module (to be specific, the fourth down sampling

convolutional block, i.e., Down_ConvBlock_4 in Table 1) and before the decoder module (to be specific, the

first upsampling convolutional block, i.e., Up_ConvBlock_4 in Table 1). Furthermore, one should notice that

the proposed attention model is modular in nature and can be adopted with any network backbones not only

UNet but also backbones such as SegNet (Badrinarayanan et al., 2017) and fully convolutional networks

(Shelhamer et al., 2017).

In the implementation, depending on different settings of the learnable weights 𝑈, 𝐻, 𝑊 in Equations (2)-(3),

three variants of the proposed attention module are developed and tested. They are temporal attention (Tem_Att,

for short), spatial-temporal attention (ST_Att, for short), and spatial-temporal attention model with fully

connected layers (STFC_Att, for short).

3.1 Temporal attention

The design of the spatial-temporal attention mechanism began with assessing the significance of each frame in

a sequence for detecting lane markings in the current frame, which is implemented through the temporal attention

(Tem_Att) module. In this module, the learnable weights of U, H, and W in equations (2)-(3) are trainable vectors

and are illustrated by V_i, V_h and V_a in Fig. 3 respectively. The three trainable vectors, each of size 1 × 1,

dynamically adjust the contributions of input features, hidden state output, and the attention output based on the

learned weights. Specifically, the input features 𝑥(𝑡−𝑁+𝑛) are modulated by the weight vector V_i and combined

with the hidden output multiplied by V_h through element-wise addition to construct a summed intermediate

attention signal 𝑧(𝑡−𝑁+𝑛), as described in equation (2). This attention signal is subsequently passed through a

softmax activation function shown as ‘Pr’ in Fig. 3 to compute the attention weights 𝑤(𝑡−𝑁+𝑛), as defined in

equation (3). These weights effectively prioritize the significance of each frame in the sequence.

Leveraging the LSTM unit (detailed in equations (7)–(12)), the hidden state ℎ(𝑡) contextualizes the input

features by incorporating information from the entire sequence within the selected time window. The attention

output 𝑥(𝑡) computed as a weighted combination of the input features 𝑥(𝑡−𝑁+𝑛) and their respective attention

weights 𝑤(𝑡−𝑁+𝑛) (see Equation (4)), captures these temporal dependencies. This output is processed through

the LSTM and a convolutional layer (as outlined in Equation (6)) to generate the module’s final output 𝑥𝑜𝑢𝑡,

which is subsequently passed to the decoder. When the three trainable vectors V_i, V_h and V_a are of size 1×1,

this approach ensures that the model dynamically adapts its focus to relevant temporal features in the image

sequence.

Fig. 3. An illustration of the temporal attention module (Tem_Att).

3.2 Spatial-temporal attention

Observations show that lane lines typically appear in specific regions within image frames, and certain features

hold greater significance for accurate detection. To account for this, a spatial attention operation is applied to

each frame, upgrading the Tem_Att module into the spatial-temporal attention (ST_Att) module. The ST_Att

module introduces three learnable weight vectors, each of size 1×128, which are applied to the input feature

matrix, the hidden state output, and the attention output at the current step. These weights with the size of 1×128

enable the module to prioritize important features within each frame. However, the ST_Att module does not

account for the spatial relationships and dependencies between neighbouring feature maps, which are addressed

in the subsequent STFC_Att module.

The structure of the ST_Att module is depicted in Fig. 4. While the workflow of ST_Att is similar to Tem_Att,

the connections between the input features, hidden state outputs, and attention outputs, along with their respective

weight matrices, follow a one-to-one mapping. These connections are illustrated with colour-coded lines in Fig.

4. Similar to Tem_Att, the attention weights are normalized to a range of 0 to 1 using a softmax activation

function (denoted as 'Pr' in Fig. 4). The final attention output is processed through a convolutional layer before

being passed to the decoder module. This mechanism ensures that the model emphasizes the most critical spatial

features in each frame. When combined with the temporal modelling capabilities of the LSTM, it effectively

leverages spatial-temporal information across image frames in the sequence, significantly enhancing the overall

performance of lane detection.

3.3 Spatial-temporal attention with fully connected layers

The Spatial-Temporal Attention with Fully Connected Layers (STFC_Att) module builds upon the ST_Att

module by incorporating a fully connected mechanism to enhance feature learning. Unlike the one-to-one

connections in ST_Att, the STFC_Att module employs many-to-many connections, where each learnable weight

matrix is multiplied with all values of the input feature map, as illustrated in Fig. 5. This many-to-many

connection allows the model to extract spatial dependencies between feature maps within the same image frame

while concurrently capturing temporal features and correlations across consecutive frames with the assistance of

the LSTM's hidden outputs.

Fig. 4. An illustration of spatial-temporal attention module (ST_Att).

The structure of the STFC_Att module is depicted in Fig. 5, where different coloured lines represent the many-

to-many connections between the input feature matrix 𝑥(𝑡−𝑁+𝑛), the hidden state output ℎ(𝑡), and the attention

output 𝑥(𝑡), along with their corresponding learnable weight matrices U, H, and W, denoted in Fig. 5 as Linear_i,

Linear_h, and Linear_a, respectively. Each of these matrices is implemented as a trainable fully connected layer

of size 1×128. These weight matrices dynamically adjust the importance of both spatial and temporal features,

ensuring a robust and comprehensive feature extraction.

Fig. 5. An illustration of spatial-temporal attention module with fully connected layers (STFC_Att).

Similar to Tem_Att and ST_Att, in the STFC_Att module, the attention output, denoted as 𝑥(𝑡), is calculated

using equation (4) as a weighted combination of the input features 𝑥(𝑡−𝑁+𝑛) and their corresponding attention

weights 𝑤(𝑡−𝑁+𝑛). Subsequently, the robust attention output is processed through a linear layer of size 1×128

with many-to-many connections. This output is then scaled to a range of 0 to 1 using the softmax function

(denoted as 'Pr' in Fig. 5). Finally, the processed attention outputs are passed through a convolutional layer, as

outlined in equation (6), before being transferred to the decoder.

The key distinction between ST_Att and STFC_Att lies in their ability to capture spatial dependencies. While

the ST_Att module focuses on weighting local spatial features within each frame, the fully connected mechanism

in STFC_Att extends the network's capability by establishing interrelations between spatial features across the

entire frame and throughout the input image sequence. This enhancement allows the model to distinguish among

spatial-temporal features more effectively and to focus its attention on the most relevant patterns. By integrating

the fully connected spatial-temporal attention mechanism, the STFC_Att module significantly enhances the

model's ability to detect lane markings in diverse driving scenarios by leveraging both spatial and temporal

interdependencies.

3.4 Implementation details

1) Deep Neural Network Details: On the whole, as illustrated in Fig. 1, the proposed method adopts an

"encoder-attention module-decoder" based sequence-to-one architecture. UNet (Ronneberger et al., 2015) is used

as the neural network backbone, in which there are one In_ConvBlock and four consecutive down sampling

convolutional blocks (i.e., Down_ConvBlock_1, Down_ConvBlock_2, Down_ConvBlock_3, Down_ConvBlock_4)

in the encoder part, and four symmetrical upsampling convolutional blocks (i.e., Up_ConvBlock_4,

Up_ConvBlock_3, Up_ConvBlock_2, Up_ConvBlock_1) in the decoder part. Between the encoder and the decoder,

there is the attention module with a temporal feature extractor (e.g., LSTM) embedded. Table 1 illustrates in

detail the input and output sizes, as well as the parameters of each layer in the entire DNN.

2) Loss function: Vision-based lane detection can be considered as the pixel-wise binary classification problem,

for which cross-entropy is a suitable loss function (Ho & Wookey, 2020). It is important to note that, in most

cases, the pixels classified as "lanes" are far fewer than those classified as "no lanes" (i.e., the background),

which makes it an unbalanced discriminative binary classification problem. Therefore, this study adopts the

weighted cross-entropy as the loss function with two rescaling weights given to each class. The two weights for

lane class and background class are set to the inverse proportion of the number of pixels in the two classes, e.g.,

there are fewer lane pixels than the background, so the weight of the lane class is larger. The adopted weighted

binary cross-entropy loss function is illustrated by Equation (13).

𝐿𝑜𝑠𝑠 = −
1

𝑀
∑ [𝑤𝑙 ∗ 𝑦𝑚 ∗ 𝑙𝑜𝑔(ℎ𝜃(𝑥𝑚)) + 𝑤𝑛𝑙 ∗ (1-𝑦𝑚) ∗ 𝑙𝑜𝑔(1 − ℎ𝜃(𝑥𝑚))]𝑀

𝑚=1 (13)

where 𝑀 is the number of training examples; 𝑤𝑙 stands for the weight of lane class, while 𝑤𝑛𝑙 for the background

class; 𝑦𝑚 is the true target label for training example 𝑚; 𝑥𝑚 is the input for training example 𝑚; and ℎ𝜃 is the

neural network model with weights 𝜃.

3) Training details: Various variants of the developed neural network model, as well as selected baseline

models, had been trained and tested on the Dutch national high-performance supercomputer cluster Lisa using

four Titan RTX GPUs with the data trained parallelly using torch.nn.DataParallel() in PyTorch library. The

input image size is set as 128 × 256 and the training batch size is set as 64. The learning rate is initially set to

0.01 with decay applied after each epoch. The Adam (Kingma & Ba, 2015), RAdam optimizer (Liyuan Liu et

al., 2020) and Stochastic Gradient Descent (SGD) (Bottou, 2010) optimizers were all tested. Experiments

demonstrated that SGD delivered the smallest loss in this study. Thus, SGD optimizer was chosen and the

momentum term was applied.

Table 1

Neural Network architecture parameters.

Layer
Input

(channel×hight×width)

Output
(channel×hight×width)

Kernel Padding Stride Activation

In_ConvBlock
In_Conv_1 3×128×256 64×128×256 3×3 (1,1) 1 ReLU

In_Conv_2 64×128×256 64×128×256 3×3 (1,1) 1 ReLU

Down_ConvBlock_1

Maxpool_1 64×128×256 64×64×128 2×2 (0,0) 2 ---

Down_Conv_1_1 64×64×128 128×64×128 3×3 (1,1) 1 ReLU

Down_Conv_1_2 128×64×128 128×64×128 3×3 (1,1) 1 ReLU

Down_ConvBlock_2

Maxpool_2 128×64×128 128×32×64 2×2 (0,0) 2 ---

Down_Conv_2_1 128×32×64 256×32×64 3×3 (1,1) 1 ReLU

Down_Conv_2_2 256×32×64 256×32×64 3×3 (1,1) 1 ReLU

Down_ConvBlock_3

Maxpool_3 256×32×64 256×16×32 2×2 (0,0) 2 ---

Down_Conv_3_1 256×16×32 512×16×32 3×3 (1,1) 1 ReLU

Down_Conv_3_2 512×16×32 512×16×32 3×3 (1,1) 1 ReLU

Down_ConvBlock_4

Maxpool_4 512×16×32 512×8×16 2×2 (0,0) 2 ---

Down_Conv_4_1 512×8×16 512×8×16 3×3 (1,1) 1 ReLU

Down_Conv_4_2 512×8×16 512×8×16 3×3 (1,1) 1 ReLU

Attention

Module

In_Attention_Conv_5_1 512×8×16 1×8×16 1×1 --- 1 ---

AttentionLayer_1 1×128* 1×128* --- --- --- ---

AttentionLayer_2 1×128* 1×128* --- --- --- ---

AttentionLayer_3 1×128* 1×128* --- --- --- ---

LSTM 128 128 --- --- --- ---

Out_Attention_Conv_5_2 1×8×16 512×8×16 1×1 --- 1 ---

Up_ConvBlock_4

UpsamplingBilinear2D_1 512×8×16 512×16×32 2×2 (0,0) 2 ---

Up_Conv_4_1 1024×16×32 256×16×32 3×3 (1,1) 1 ReLU

Up_Conv_4_2 256×16×32 256×16×32 3×3 (1,1) 1 ReLU

Up_ConvBlock_3

UpsamplingBilinear2D_2 256×16×32 256×32×64 2×2 (0,0) 2 ---

Up_Conv_3_1 512×32×64 128×32×64 3×3 (1,1) 1 ReLU

Up_Conv_3_2 128×32×64 128×32×64 3×3 (1,1) 1 ReLU

Up_ConvBlock_2

UpsamplingBilinear2D_3 128×32×64 128×64×128 2×2 (0,0) 2 ---

Up_Conv_2_1 256×64×128 64×64×128 3×3 (1,1) 1 ReLU

Up_Conv_2_2 64×64×128 64×64×128 3×3 (1,1) 1 ReLU

Up_ConvBlock_1

UpsamplingBilinear2D_4 64×64×128 64×128×256 2×2 (0,0) 2 ---

Up_Conv_1_1 128×128×256 64×128×256 3×3 (1,1) 1 ReLU

Up_Conv_1_2 64×128×256 64×128×256 3×3 (1,1) 1 ReLU

Out_ConvBlock Out_Conv 64×128×256 2×128×256 1×1 (0,0) 1 ---

*This is an example of the spatial-temporal attention (ST_Att) module. Corresponding to three attention variants, parameters in

AttentionLayer_1, AttentionLayer_2, and AttentionLayer_3 will be learnable vectors of size 1 × 1 for Tem_Att, learnable vectors

of size 1 × 128 for ST_Att, or learnable vectors with many to many connections of size 1 × 128 for STFC_Att, respectively.

 9

4. Experiments and results

To verify the effectiveness and robustness of the proposed model with the designed attention module,

extensive experiments were carried out on three commonly used large-scale open-source datasets, i.e., TuSimple,

tvtLANE (Zou et al., 2020), and LLAMAS (Behrendt & Soussan, 2019) datasets. Several DNN-based lane

detection models, e.g., LaneNet (Neven et al., 2018), SCNN (Pan et al., 2018), Seg-Net (Badrinarayanan et al.,

2017), UNet (Ronneberger et al., 2015), SegNet_ConvLSTM (Zou et al., 2020), and UNet_ConvLSTM (Zou et

al., 2020), were selected as the baselines.

4.1 Test on tvtLANE and TuSimple Datasets

4.1.1 Datasets description

The original dataset of the TuSimple Lane Detection Challenge consists of 3,626 training and 2,782 testing

one-second clips that are collected under different driving conditions. Each clip is extracted into 20 continuous

frames, and only the last frame, i.e., the 20th frame, is labelled as the ground truth. Additionally, Zou et al. (2020)

added the label of the 13th frame and augmented the TuSimple dataset with 1,148 additional clips (with also the

13th and 20th frames labelled) regarding rural road driving scenes collected in China. Moreover, rotation, flip,

and crop operations are employed for data augmentation, and finally, a total number of (3,626 + 1,148) × 4 =

19,096 sequences were produced, among which 38,192 frames are labelled with ground truth.

For testing, there are 2,782 testing clips in the original TuSimple dataset. While in tvtLANE, there are two

different testing sets, namely, Testset #1 which is based on the original TuSimple test set for normal driving

scene testing, as well as Testset #2 which contains 12 challenging driving scenarios for testing challenging scenes

and assessing the model robustness.

In the training phase, three different sampling strides, with an interval of 1, 2, and 3 frames respectively, were

adopted to adapt to different driving speeds which also augment the training samples by three times, whereas in

the test phase, the sampling stride was set as a fixed interval of 1 frame.

Detailed descriptions of the two datasets and sampling settings can be found in (Dong et al., 2023; Zou et al.,

2020).

4.1.2 Qualitative evaluation

As the intuitive evaluation approach with visualization, in this subsection, qualitative lane detection results of

different models are demonstrated in figure visualizations. The figure demonstrations are helpful to identify the

strengths and weaknesses of the evaluated models and provide insights.

 1)Results on tvtLANE testset #1: normal driving scene testing

Samples of the results from lane detection segmentation on tvtLANE testset #1 are shown in Fig. 6. The lane

lines are segmented into white pixels, while the background is displayed in black pixels. Three proposed

attention-based model variants and the baseline deep learning models were tested. Here in Fig. 6, all of the results

are without post-processing, which also applies to all the visualizations and quantitative evaluations discussed

later in this paper.

Qualitatively, the models should be able to a) correctly predict the number of lanes; b) accurately locate the

lane lines in the segmentation image; c) segment the lanes in thin lines without blurs; d) keep proper continuity

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection

 10

without unexpected breaks in continuous lanes. Regarding these aspects, the proposed models with attention

mechanisms all deliver good results, especially the STFC_Att based model indicated in the last row (i) which

output the thinner lane lines with good continuity and fewer blurs. One may argue that it does not detect the

correct number of lanes in the first two columns from the left. However, when zooming in for details, one can

identify that the model correctly detects the left road boundary lanes which are too difficult and even not labelled

in the ground truth. This defect with the dataset is also discussed in (J. Zhang et al., 2022).

Furthermore, in accord with previous studies (Dong et al., 2023; J. Zhang et al., 2022; Zou et al., 2020), models

using multi-continuous image frames generally outperform models using a single frame, as the latter output thick

lines with heavy blurs.

2) Results on tvtLANE testset #2: challenging scenes

According to Fig. 7, the proposed model is compared qualitatively with the baseline models when faced with

some extremely challenging driving scenarios (tested on the tvtLANE testset #2). Involving a broad range of

challenging situations, the testset #2 is a separated new dataset which is unseen during the training phase. It is

observed that all the models do not perform well, especially regarding the 3rd column where there are vehicle

occlusions and dirt road surfaces simultaneously. However, similar to norm scenes, the proposed attention-based

models overall surpass baselines with thinner continuous lines and more correct locations and lane numbers.

Typically, shown in the 4th column of Fig. 7, the STFC_Att-UNet_LSTM model demonstrates superior results

detecting smooth clear lines with the correct number of lanes in the serious vehicle occlusion case, in which

almost all the other models are defeated. This can be inferred by its capability of exploring spatial-temporal

correlations among neighbouring pixels.

Fig. 6. Qualitative evaluation 1: Comparison of the results of lane detection on tvtLANE testset #1 (normal situations).

 11

Fig. 7. Qualitative evaluation 2: Comparison of the lane detection results on tvtLANE testset #2 (challenging

situations).

3) Results on TuSimple testing set

As mentioned before, the TuSimple testing set is similar to the tvtLANE testset#1, thus similar patterns are

observed in Fig. 8. Compared with the baseline model UNet_ConvLSTM, the proposed models can detect more

correct lane lines with fewer blurs.

 12

Fig. 8. Qualitative evaluation 3: Comparison of the lane detection results on the TuSimple test set.

4.1.3 Quantitative evaluation

1) Evaluation metrics: Treating the vision-based lane detection as a pixel-wise unbalanced two-class

classification and discriminative segmentation task, and following the convention in previous studies (Dong et

al., 2023; Lizhe Liu et al., 2021; Pan et al., 2018; H. Xu et al., 2020; J. Zhang et al., 2022; Zou et al., 2020), this

study utilizes four commonly adopted evaluation criteria, i.e., accuracy, precision, recall, and F1-measure, to

quantitatively verify the proposed models. The four criteria are illustrated in Equations (14)~(17):

Accuracy =
𝑇𝑟𝑢𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠
 (14)

Precision =
True Positive

True Positive+False Positive
 (15)

Recall =
True Positive

True Positive+False Negative
 (16)

F1-measure =
2∗Precision∗Recall

Precision+Recall
 (17)

where true positive correlates to the pixels that are accurately identified as lanes, false-positive indicates the

number of background pixels that are incorrectly categorized as lanes, and false negative is for the number of

lane pixels that were incorrectly categorized as background.

This study also provides the size of the model parameter, referred to as Params (M), as well as multiply-

accumulate (MAC) operations, referred to as MACs (G), as indicators for estimating the computational

complexity and capabilities of the models for real-time performance.

 13

2) Quantitative performance comparison on tvtLANE testset #1 (normal situations)

As shown in Table 2, when testing on tvtLANE testset#1, all the developed attention based models perform

better than the baselines regarding F1-Measure, accuracy, and precision. This verifies the effectiveness of the

proposed attention mechanism. The developed model STFC_Att-SCNN_UNet_LSTM (which will be discussed

in detail in the ablation study) performs the best with the highest F1-Measure, accuracy, and precision.

Furthermore, compared to the other two baseline models, i.e., UNet_ConvLSTM and SegNet_ConvLSTM,

which also adopt multi frames as inputs, the developed models are all smaller in parameter size and with fewer

MACs. This means that the developed models can deliver better results while using lower computation resources

and with higher processing speed.

Table 2

Model quantitative performance comparison on tvtLane testset #1 (normal situations)

Test_Acc

(%)
Precision Recall F1-Measure

MACs

(G)
Params

(M)

Models using

single image

Baseline Models

U-Net 96.54 0.790 0.985 0.877 15.5 13.4

SegNet 96.93 0.796 0.962 0.871 50.2 29.4

SCNN* 96.79 0.654 0.808 0.722 77.7 19.2

LaneNet* 97.94 0.875 0.927 0.901 44.5 19.7

Models using

continuous

image frames

SegNet_ConvLSTM 97.92 0.874 0.931 0.901 217.0 67.2

UNet_ConvLSTM 98.00 0.857 0.958 0.904 69.0 51.1

Proposed Models

Tem_Att-UNet_LSTM 98.08 0.877 0.936 0.906 44.7 13.5

ST_Att-UNet_LSTM 98.09 0.879 0.941 0.909 44.8 13.5

STFC_Att-UNet_LSTM 98.14 0.887 0.941 0.911 44.9 13.5

STFC_Att-SCNN_UNet_LSTM** 98.20 0.906 0.936 0.921 68.9 13.7

* Results reported in (J. Zhang et al., 2022).

 ** Model variant used for ablation study.

 Tem_Att-UNet_LSTM means the temporal attention based model using the UNet_LSTM network backbone. This naming rule

also applies to other models.

3) Quantitative performance comparison on tvtLane testset #2 (challenging scenes)

For testing model robustness, the developed models were also evaluated and verified on the brand-new dataset,

namely the tvtLANE testset #2, which contains 12 challenging scenes.

As shown in Table 3, in terms of precision, ST_Att-UNet_LSTM performs the best in bright, curve, and urban

scenes, while STFC_Att-UNet_LSTM performs the best in occluded, shadow and tunnel scenes. Therefore, they

dominate half of the 12 challenging scenes.

High precision means the model is more strict for the pixels to be classified as lane lines, i.e., fewer False

Positives. This is crucial for the vehicles’ localizing lanes. However, being too strict might result in more False

Negatives, then a lower recall ratio, and then a worse F1-measure. This is why the developed models are not

good in terms of F1-measure. Furthermore, it is witnessed that during the training process, all the models

 14

obtained higher recalls and lower precisions at the beginning. Then as the training went on, the recalls decreased

while the precisions rose. This general pattern applies to all models. With this, one can infer that a higher

precision is more important. All these demonstrate the developed models’ robustness over challenging scenes.

Table 3

Model quantitative performance comparison on tvtLane testset #2 (12 challenging scenes)

PRECISION

 Challenging

Scenes
1-

curve

&

occlude

2-

shadow
3-

bright
4-

occlude
5-

curve

6-

dirty

&

occlude

7-

urban

8-

blur

&

curve

9-

blur
10-

shadow
11-

tunnel

12-
dim

&

occlude

U-Net 0.7018 0.7441 0.6717 0.6517 0.7443 0.3994 0.4422 0.7612 0.8523 0.7881 0.7009 0.5968

SegNet 0.6810 0.7067 0.5987 0.5132 0.7738 0.2431 0.3195 0.6642 0.7091 0.7499 0.6225 0.6463

UNet_ConvLSTM 0.7591 0.8292 0.7971 0.6509 0.8845 0.4513 0.5148 0.8290 0.9484 0.9358 0.7926 0.8402

SegNet_ConvLSTM 0.8176 0.8020 0.7200 0.6688 0.8645 0.5724 0.4861 0.7988 0.8378 0.8832 0.7733 0.8052

Tem_Att-UNet_LSTM 0.8430 0.8909 0.7732 0.5740 0.8322 0.4692 0.4567 0.8358 0.8090 0.9244 0.7893 0.8046

ST_Att-UNet_LSTM 0.7938 0.8743 0.8013 0.7014 0.8894 0.5215 0.4935 0.8290 0.8517 0.9286 0.7516 0.8218

STFC_Att-UNet_LSTM 0.8239 0.8782 0.7646 0.7031 0.8871 0.5295 0.4848 0.7354 0.9023 0.9395 0.8794 0.7542

F1-MEASURE

U-Net 0.8200 0.8408 0.7946 0.7337 0.7827 0.3698 0.5658 0.8147 0.7715 0.6619 0.5740 0.4646

SegNet 0.8042 0.7900 0.7023 0.6127 0.8639 0.2110 0.4267 0.7396 0.7286 0.7675 0.6935 0.5822

UNet_ConvLSTM 0.8465 0.8891 0.8411 0.7245 0.8662 0.2417 0.5682 0.8323 0.7852 0.6404 0.4741 0.5718

SegNet_ConvLSTM 0.8852 0.8544 0.7688 0.6878 0.9069 0.4128 0.5317 0.7873 0.7575 0.8503 0.7865 0.7947

Tem_Att-UNet_LSTM 0.8933 0.8657 0.8123 0.6513 0.8306 0.3530 0.5263 0.8290 0.7039 0.5338 0.5225 0.5226

ST_Att-UNet_LSTM 0.8548 0.8977 0.8253 0.7293 0.8254 0.3627 0.5543 0.8369 0.7480 0.6197 0.5522 0.5363

STFC_Att-UNet_LSTM 0.8690 0.9059 0.8314 0.7456 0.8086 0.3660 0.5277 0.7715 0.7329 0.6543 0.6471 0.5852

Models

 15

4) Performance and comparisons on TuSimple testing set

The aforementioned TuSimple testing set has similar but more testing samples compared to the tvtLANE

testset#1. Regarding the quantitative results on the TuSimple testing set, as demonstrated in Table 4, the

proposed STFC_Att-UNet_LSTM obtains the best F1-measure, the best precision, and the second to best

accuracy (i.e., 98.20% only a bit lower than the best of 98.22%). Although UNet_ConvLSTM shows the best

accuracy, it is worth noting that its MACs and parameter size are much larger than the proposed models. In this

case, one can conclude that the developed models with lower computational complexities are robust with good

results on the TuSimple testing set.

Table 4

Model quantitative performance comparison on TuSimple testing set

Test_Acc

(%)
Precision Recall

F1-

Measure

MACs

(G)

Params

(M)

Models using

continuous

image frames

Baseline Models

SegNet_ConvLSTM* 97.96 0.852 0.964 0.901 217.0 67.2

UNet_ConvLSTM* 98.22 0.857 0.958 0.904 69.0 51.1

UNet_DoubleConvGRU* 98.04 0.875 0.953 0.912 --- 13.4

Proposed Models

Tem_Att-UNet_LSTM 98.05 0.876 0.923 0.899 44.7 13.5

ST_Att-UNet_LSTM 98.14 0.881 0.925 0.902 44.8 13.5

STFC_Att-UNet_LSTM 98.20 0.886 0.950 0.917 44.9 13.5

* Results reported in (J. Zhang et al., 2022).

4.2 Test on LLAMAS dataset

4.2.1 Datasets description

To further verify the robustness of the proposed method, the LLAMAS dataset (Behrendt & Soussan, 2019)

is adopted to train, validate, and test different models. Consisting of a total of 100,042 images, LLAMAS is one

of the largest open-source lane marker datasets. Among the 100,042 images, 79,113 of them are used for training

with labelled ground truth, while 20,929 of them were originally used for testing with no corresponding labels.

To still follow the proposed end-to-end supervised learning pipeline and make it comparable with the previous

work (J. Zhang et al., 2022), this study follows the processes described in (J. Zhang et al., 2022) utilizing only

the labelled 79,113 images and dividing them into two groups. To be specific, 58,269 images were used for

training, and 20,844 images were used for testing. More details about the LLAMAS dataset can be found in

(Behrendt & Soussan, 2019; J. Zhang et al., 2022).

4.2.2 Qualitative evaluation

Limited by computational resources and time, this study only trained ST_Att-UNet_LSTM and STFC_Att-

UNet_LSTM models on the LLAMAS dataset. Fig. 9 provided the qualitative visualization results of ST_Att-

UNet_LSTM for testing on the LLAMAS dataset. In the top row, the predicted lane lines are shown in red colour,

and in the bottom row, the predicted lane lines are segmented with white pixels under black background. As

shown, the lane lines in LLAMAS are labelled in a different way using dash lines, which makes it much more

 16

challenging. Qualitatively, from the visualization, one can observe that there are very few false positives and the

lane lines are generally predicted accurately.

Fig. 9. Qualitative evaluation 4: Lane detection results on the LLAMAS dataset.

4.2.3 Quantitative evaluation

To quantitatively evaluate the model performances on the LLAMAS dataset, except for the aforementioned

precision and recall, similar to (Behrendt & Soussan, 2019; J. Zhang et al., 2022), average precision (AP) was also

adopted. AP is the mean of the weighted precision scores at different thresholds. The weights are the differences

in recalls from the prior tested thresholds. To be clear, AP is illustrated in Equation (18)

AP = ∑ ∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑝 ∗ ∆𝑅𝑒𝑐𝑎𝑙𝑙𝑞)𝑉+1
𝑞=1

𝑈
𝑝=1

 (18)

where U means the total number of the tested image frames; V means the number of pixel samples for a single

image; ∆𝑅𝑒𝑐𝑎𝑙𝑙 represents the difference between the Recall values of two consecutive samples. The variables

p and q are subscripts to number the samples. In the implementation, similar to (J. Zhang et al., 2022), this study

sets Recall0 to 0, Precision0 to 1, and the variable V to 100.

The quantitative results are demonstrated in Table 5.

Table 5.

Model quantitative performance comparison on the LLAMAS dataset

 Average Precision (AP) Precision Recall

UNet_Double_ConvGRU* 0.8519 0.6162 0.6163

SegNet ConvLSTM* 0.8500 0.5487 0.6839

UNet_ConvLSTM* 0.8510 0.5857 0.6558

ST_Att-UNet_LSTM 0.7106 0.6253 0.6584

STFC_Att-UNet_LSTM 0.7141 0.6317 0.6413

* Results reported in (J. Zhang et al., 2022).

As shown in Table 5, the STFC_Att-UNet_LSTM model provides the best corner precision when testing on

the LLAMAS dataset. This is an indication that the model delivers a lower number of false positives, which, as

discussed before, is more crucial for lane localization. It also obtains a comparable corner recall. Furthermore,

it is worth noting that both the proposed models maintain a better balance among the three evaluation metrics

although they do not perform well in average precision. To sum up, the developed models' robustness on the

LLAMAS dataset is demonstrated with competitive quantitative and qualitative detection results.

 17

4.3 Qualitative test on unlabeled Netherlands lane dataset

To further verify the developed models’ robustness in handling new and challenging driving scenes, the

unlabeled Netherlands lane dataset was adopted for qualitative testing. This dataset covers a wide range of

driving situations in the Netherlands, some of which are very challenging.

Fig. 10. Qualitative evaluation 5: Lane detection results on unlabeled Netherlands lane dataset.

Fig. 10 shows the lane detection results of ST_Att-UNet_LSTM, which is only trained on the LLAMAS

dataset. Even without any supervised training on the unlabeled Netherlands lane dataset, the proposed model

demonstrates excellent transfer capabilities by clearly detecting lane line numbers and locations. Furthermore,

the model can correctly identify whether the lanes are continuous or dashed lanes. The good performance can be

attributed to that the developed ST_Att-UNet_LSTM with spatial-temporal attention module can aggregate rich

valuable context information to focus on generalized information and salient regions in both one image and the

continuous image frames. This qualitative testing further verifies the robustness of the developed model.

4.4 Post-explanation of attention mechanism by visualization

To explain how the proposed attention mechanism works, in this subsection, a case study with visualization

is provided. Consider a vehicle running under a bridge as shown in Fig. 11. The top row shows the original

continuous image frames, with the 6th image just copying the 5th one as the current frame for the detection task.

In the bottom row, the first 5 images are the attention activation visualizations for the continuous image frames,

and the 6th image is the lane detection result. As shown in this case, the bridge casts shadows on a part of the

road on the left side and the lane lines are not visible there. Also, on the right side, parts of the lanes are occluded

by the front vehicle. The developed spatial-temporal based neural network model, therefore, focuses on features

from previous frames to predict where the lane lines are located even when the lane lines are not visible in the

current frame (the 5th image in the top row). As shown, in frames 1, 2, 3 and 4 the lane lines are visible partially.

The spatial-temporal based neural network model can detect points and regions of interest (illustrated by the

light green colour) among these continuous frames and "memorize" the locations of the lane lines. Due to the

continuous nature of the lane lines, the network will predict the lane line in the 5th frame making use of the

"memorized" information of the previous frames. This ability to memorize salient spatial-temporal correlations

among continuous frames can also contribute to other adverse challenging situations.

 18

Fig. 11. Visualization of the case study: lane detection under a bridge with shadows and occlusion.

5. How to use the codes

(1) Download tvtLANE Dataset:

You can download this **dataset** from the link in the '**Dataset-Description-v1.2.pdf**' file.

BaiduYun：https://pan.baidu.com/s/1lE2CjuFa9OQwLIbi-OomTQ passcodes：tf9x

Or

Google Drive:

https://drive.google.com/drive/folders/1MI5gMDspzuV44lfwzpK6PX0vKuOHUbb_?usp=sharing

The **pretrained model** is also provided in the "/model" folder, named as

98.48263448061671_RAd_lr0.001_batch70_FocalLoss_poly_alpha0.25_gamma2.0_Attention_UNet_LSTM.p

th .

(2) Set up

Requirements

PyTorch 0.4.0

Python 3.9

CUDA 8.0

Preparation

Data Preparation

The dataset contains 19383 continuous driving scenes image sequences, and 39460 frames of them are labeled.

The size of images is 128*256.

The training set contains 19096 image sequences. Each 13th and 20th frame in a sequence are labeled, and the

image and their labels are in “clips_13(_truth)” and “clips_20(_truth)”. All images are contained in “clips_all”.

Sequences in “0313”, “0531” and “0601” subfolders are constructed on TuSimple lane detection dataset,

containing scenes in American highway. The four “weadd” folders are added images in rural road in China.

The testset has two parts: Testset #1 (270 sequences, each 13th and 20th image is labeled) for testing the overall

performance of algorithms. The Testset #2 (12 kinds of hard scenes, all frames are labeled) for testing the

robustness of algorithms.

https://pan.baidu.com/s/1lE2CjuFa9OQwLIbi-OomTQ
https://drive.google.com/drive/folders/1MI5gMDspzuV44lfwzpK6PX0vKuOHUbb_?usp=sharing

 19

To input the data, we provide three index files(train_index, val_index, and test_index). Each row in the index

represents for a sequence and its label, including the former 5 input images and the last ground truth

(corresponding to the last frame of 5 inputs).

The dataset needs to be put into a folder with regards to the location in index files, (i.e., txt files in "./data/". The

index files should also be modified add cording to your local computer settings. If you want to use your own

data, please refer to the format of our dataset and indexes.

(3) Training

Before training, change the paths including "train_path"(for train_index.txt), "val_path"(for val_index.txt),

"pretrained_path" in config_Att.py to adapt to your environment.

Choose the models (UNet_ConvLSTM | SCNN_UNet_ConvLSTM | SCNN_UNet_Attention) as the default

one which is also indicated by default='UNet-ConvLSTM' thus you do not need to make change for this. And

adjust the arguments such as class weights (now the weights are set to fit the tvtLANE dataset), batch size,

learning rate, and epochs in config_Att.py. You can also adjust other settings, e.g., optimizer, check in the codes

for details.

Then simply run: train.py. If running successfully, there will be model files saved in the "./model" folder. The

validating results will also be printed.

(4) Test

To evaluate the performance of a trained model, please select the trained model or put your own models into the

"./model/" folder and change "pretrained_path" in test.py according to the local setting, then change "test_path"

to the location of test_index.txt, and "save_path" for the saved results.

Choose the right model that would be evaluated, and then simply run: test.py.

The quantitative evaluations of Accuracy, Precision, Recall, and F1 measure would be printed, and the lane

detection segmented results will be saved in the "./save/" folder as pictures.

6. Authors

Yongqi Dong (y.dong-4@tudelft.nl), Sandeep Patil, Haneen Farah, Hans Hellendoorn

Reference

Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture

for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495.

https://doi.org/10.1109/TPAMI.2016.2644615

Bottou, L., 2010. Large-scale machine learning with stochastic gradient descent, in: Proceedings of COMPSTAT

2010 - 19th International Conference on Computational Statistics, Keynote, Invited and Contributed Papers.

https://doi.org/10.1007/978-3-7908-2604-3_16

mailto:y.dong-4@tudelft.nl

 20

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on

Sequence Modeling 1–9.

Dong, Y., Patil, S., van Arem, B., Farah, H., 2022. A hybrid spatial–temporal deep learning architecture for lane

detection. Comput. Civ. Infrastruct. Eng. 1–20. https://doi.org/10.1111/mice.12829

Ho, Y., Wookey, S., 2020. The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of

Mislabeling. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2962617

Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization, in: 3rd International Conference on

Learning Representations, ICLR 2015 - Conference Track Proceedings.

Liu, L., Chen, X., Zhu, S., Tan, P., 2021. CondLaneNet: a Top-to-down Lane Detection Framework Based on

Conditional Convolution.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J., 2019. On the Variance of the Adaptive Learning Rate

and Beyond 1–14.

Pan, X., Shi, J., Luo, P., Wang, X., Tang, X., 2018. Spatial as deep: Spatial CNN for traffic scene understanding, in:

32nd AAAI Conference on Artificial Intelligence, AAAI 2018. AAAI press, pp. 7276–7283.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation.

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 9351, 234–

241. https://doi.org/10.1007/978-3-319-24574-4_28

Shelhamer, E., Long, J., Darrell, T., 2017. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans.

Pattern Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.2016.2572683

Xu, H., Wang, S., Cai, X., Zhang, W., Liang, X., Li, Z., 2020. CurveLane-NAS: Unifying Lane-Sensitive

Architecture Search and Adaptive Point Blending 1–16.

Zhang, J., Deng, T., Yan, F., Liu, W., 2021. Lane Detection Model Based on Spatio-Temporal Network With

Double Convolutional Gated Recurrent Units. IEEE Trans. Intell. Transp. Syst.

https://doi.org/10.1109/TITS.2021.3060258

Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L., Wang, Q., 2020. Robust lane detection from continuous driving

scenes using deep neural networks. IEEE Trans. Veh. Technol. 69, 41–54.

https://doi.org/10.1109/TVT.2019.2949603

