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Abstract 

This chapter deals with improving the understanding of the 

driving parameters of short-term voltage stability in modern 

power systems. The approach utilizes DIgSILENT PowerFactory 

2020 SP2A paired with Python API, enabling the evaluation of a 

complex multivariable problem efficiently by running a large 

number of dynamic simulations automatically. The presented 

approach is not only limited to short-term voltage stability, but 

can be also utilized for various large-scale dynamic studies. As 

systems shift towards more complexity in both generation and 

consumption, similar studies shall become indispensable in the 

power systems field.  
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1.1 Introduction 

 

The number of distributed energy resources (DER) is increasing rapidly in power 

systems worldwide. Coincidentally, the number and complexity of dynamic loads 

are also growing. This leads to increasingly intricate and relevant impacts of Active 

Distribution Networks (ADN) on the overall system dynamics and stability. 

Furthermore, as synchronous generation is phased out, system strength and inertia 

are decreased, and system dynamics are enhanced and accelerated. Short-term 

voltage stability consequently becomes one of the major issues that renewables-

driven power systems are facing. It is therefore of the uttermost importance to be 

able to simulate and analyse grid stability comprehensively, even with a large 

number of components and possible control parameters that define their operation.  

However, this is a complex multivariable challenge that requires an innovative 

approach. Utilizing advanced simulation software such as DIgSILENT 

PowerFactory is necessary and valuable [1], but often not sufficient. There is also a 

need for a programming interface to automate simulations for a large number of 

potential operational scenarios and parameters. As power systems digitalize and 

move towards control-driven dynamics, rather than electromechanical, the ability 

to perform dynamic simulations with a wide range of parameters efficiently is vital. 

This chapter describes a fundamental study on short-term voltage stability, utilizing 

some of the most advanced voltage stability models in the process. The dynamic 

analysis is automatized with Python, enabling the efficient execution of thousands 

of simulations with varying operating conditions and relevant parameters. The 

original analysis is performed in [2], where further technical details can be found. 

The chapter is organized as follows. Section 1.2 briefly describes the problematics 

of short-term voltage stability and the effects of active distribution networks and 

their parameters. Section 1.3 introduces the test models. In Section 1.4, the utilized 

Python scripting and its benefits are demonstrated, with detailed codes and relevant 

simulation results. Finally, Section 1.5 concludes the chapter. 
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1.2 Power Systems Short-term Voltage Stability 

 

Systems are as strong as their weakest link. With the decentralization of power 

systems generation, as well as intricate technical challenges brought by inverter-

based resources (IBRs) and dynamic loads, finding the weakest link and its 

interactions with other elements in the system becomes exceptionally difficult. 

Meanwhile, preventing power system instability and its consequences such as 

blackouts is crucial in the interconnected and electricity-powered society. To 

prevent it, one must first understand it and be able to model it accurately. Power 

system stability is commonly defined as follows [3]: 

Power system stability is the ability of an electric power system, for a given initial 

operating condition, to regain a state of operating equilibrium after being subjected 

to a physical disturbance, with most system variables bounded so that practically 

the entire system remains intact. 

It comprises several different classes. The most recent commonly accepted 

definition and classification of stability were established in [3]. This classification 

is presented in Figure 1. 

 

Figure 1: Classification of power system stability [3] 

This chapter focuses on short-term stability, particularly short-term voltage stability 

(STVS). Furthermore, a holistic perspective of short-term instabilities is taken, 

where each instability mechanism is described in Figure 2. A more detailed 

discussion on this can be found in [2, 4] and is omitted from this chapter for brevity. 
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Figure 2: A concise overview of the four distinctive short-term instability 

phenomena, characteristics, and illustrative voltage deviations [4]. 

In the past, long-term voltage stability has generally been the focus of academia and 

industry. However, short-term (voltage) instability becomes much more 

pronounced with the proliferation of distributed energy resources (DER) and 

various types of dynamic loads such as induction motors and electronically 

controlled motors [2]. This presents a challenge as distribution networks become 

Active Distribution Networks (ADNs), with a potentially significant impact on 

system stability [2, 5]. This impact ought to be analysed in modern power systems, 

which is the goal of the presented analysis. 

Meanwhile, parameter uncertainty is the other very important aspect that limits the 

ability to analyse the impacts of ADN on bulk power systems comprehensively. 

This is where DIgSILENT PowerFactory and Python API synergy may provide 

significant benefits, as showcased in the following sections. 

1.3 Model and Methodology Description 

 

To study STVS, the usage of suitable models is a very important first step. Simple 

models are unable to represent relevant dynamics that occur and lead to short-term 

instabilities. For this study, the advanced test grid for voltage stability is utilized: 
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IEEE Test System for Voltage Stability Analysis and Security Assessment [6]. The 

grid is based on the Nordic Power System, and its single-line diagram and 

description are provided in Figure 3. 

 

Figure 3: IEEE Test System for Voltage Stability Analysis and Security 

Assessment [6], with blue circles indicating ADN locations [2] 

To study the impacts of ADNs on STVS, it is necessary to introduce representative 

models of ADNs in the test system. For this task, the latest advanced dynamic load 

and DER models are introduced to the test system in locations depicted in blue in 
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Figure 3. Such model enhancements improve the ability to represent the dynamic 

behaviour seen in real modern grids. 

Figure 4 describes the WECC Composite Load Model, commonly utilized to 

represent the aggregated response of various dynamic loads [7-9]. The model 

consists of three different types of 3-phase motors (A, B, and C), a single-phase A/C 

motor (D), electronic load, and static load. Furthermore, feeders and busbars are 

also modelled. The entire model is available in DIgSILENT templates library, under 

Loads, titled WECC Dynamic Composite Load. The model is very attractive in 

representing numerous load-grid dynamics that common static models such as the 

ZIP model simply cannot reproduce. More discussion on the benefits and details of 

this model can be found in [7-9]. 

 

Figure 4: WECC Composite Load model (incl. DER_A model) [2] 

Furthermore, distributed generation is also represented in these ADNs. The cutting-

edge model for representing DERs in bulk power system stability studies is the 

DER_A model, with its diagram depicted in Figure 5. The DER_A model is a 

successor of the well-known PVD1 model, with enhanced abilities to characterize 

various control strategies of a distributed generator with high fidelity in both static 

and dynamic operation. It is therefore introduced alongside the WECC load model 

for a complete ADN model, utilizing DIgSILENT template WECC DER 

Generation. Details on the DER_A model, its usage, validation, parametrization, 

etc. can be found in [9-13]. 
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Figure 5: The detailed diagram of the DER_A model [10] 

All these models are incorporated together as shown in Figure 3, which creates 

possibilities to evaluate short-term instabilities in various operational settings. 

However, this is an extremely broad task, as the derived system has many 

parameters that may have large effects on system stability. To unpack and 

understand these effects, running simulations manually one by one is unfeasible 

from the time perspective. Instead, a massive number of simulations need to be 

performed automatically, which is where Python API provides enormous benefits. 

Figure 6 depicts interactions and data exchange between the created Python script 

and DIgSILENT PowerFactory through Python API. 

 

Figure 6: Exchange of data between Python and DIgSILENT PowerFactory 

Chapter 1.4 describes in detail how the Python script is created to analyse the STVS 

of the created test system efficiently, with several varying parameters of interest. 
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1.4 Python Scripting and Simulation Results 

 

In this section, the Python code used in the analyses will be shown in detail. Deeper 

discussions on some aspects are omitted and some parts were simplified for brevity. 

Where missing, the reader is advised to look for further explanations in [2]. The 

entire analysis is performed in Python 3.8.3 (using Jupyter Notebook) and 

DIgSILENT PowerFactory 2020 SP2A in the graphical user interface (GUI) [14, 

15]. Alternatively, it is also possible to run simulations and the script (with minor 

adjustments) in the so-called engine mode, where an external Python script can run 

PowerFactory without the need for GUI. More details on this can be found in [14-

15], with some examples in [16].  

1.4.1 Libraries and functions 

First, the libraries that shall be used in the script need to be imported (Figure 7). It 

is particularly important to make sure that the powerfactory module is successfully 

imported, so Python API can run. It may be necessary to check and adjust the Python 

path in case of an error and check if the compatible versions are used. 

1. import sys 
2. import powerfactory as pf 
3. import numpy as np 
4. import pandas as pd 
5. app = pf.GetApplication() 
6. if app is None: 
7.     raise Exception("Getting PowerFactory application failed") 

Figure 7: Importing necessary libraries 

As this script will be relatively long with possible repetitiveness, it is convenient to 

define several functions to be used. Firstly, two functions for preparing and running 

simulations are created and shown in Figure 8. Next, two functions for defining 

simulation events are created. These functions will be used to adjust fault 

parameters such as fault time, location, duration, impedance, etc. automatically. 

1. def setupSimultation(comInc, comSim): 
2.     # Initializiation 
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3.     comInc.iopt_sim = "rms" 
4.     comInc.start = 0 
5.     # Defining simulation time 
6.     comSim.tstop = 8 
7.   
8. def runSimulation(comInc, comSim): 
9.     app.EchoOff() #disables PF user interface 
10.     comInc.Execute() 
11.     app.EchoOn() 
12.     comSim.Execute() 

13. def clearSimEvents(): ## deletes all previous simulation events 
14.     faultFolder = 

app.GetFromStudyCase("Simulationsereignisse/Fehler.IntEvt") 
15.     cont = faultFolder.GetContents() 
16.     for obj in cont: 
17.         obj.Delete()     
18.   
19. ## creates a new simulation fault event 
20. def addFaultEvent(obj, sec, faultType, R, X):   
21.     faultFolder = 

app.GetFromStudyCase("Simulationsereignisse/Fehler.IntEvt") 
22.     event = faultFolder.CreateObject("EvtShc", obj.loc_name) 
23.     event.p_target = obj  # object that will be short-circuited 
24.     event.time = sec   ## time instance when the fault occurs 
25.     event.i_shc = faultType ## fault type (e.g. 3-phase SC) 
26.     if faultType == 0: 
27.         event.R_f = R  ## here we define fault R and X 
28.         event.X_f = X 

Figure 8: Defining several functions 

Next, to access a specific list of elements in the system shown in Figure 3, a 

convenient function is created to avoid repeating the same line of code multiple 

times. The code is shown in Figure 9. 

1. ## returns the list of selected elements (in name order)        
2. def getSelectedElements(all_elements,wanted_elements):  
3. #takes a list of objects and a list of strings(names) 
4.     elements = [] 
5.     for i in range(0,len(wanted_elements)): 
6.         for z in range(0,len(all_elements)): 
7.             if str(all_elements[z].loc_name) == 

wanted_elements[i]: 
8.                 elements.append(all_elements[z]) 
9.     if len(elements)==0:            
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10.         raise Exception("Something went wrong, the returned 
list is empty")           

11.     return elements 

Figure 9: Defining a function for accessing grid elements of interest 

The function getSelectedElements() works by collecting the list of passed 

elements (wanted_elements) from the passed list of objects, by using the internal 

loc_name characteristic of the objects. Later in the section, it will be shown how 

this can be used to select a list of various elements such as buses, loads, generators, 

etc. It is of course necessary to first define these corresponding names in 

PowerFactory when creating the elements, so they can be accessed. This can also 

be automatized by using DPL; however, this is out of the scope of this chapter. 

Finally, a function to add result variables of interest for exporting is created as 

shown in Figure 10. 

1. def addRecordedResult(elmRes, obj, param): 
2.     if type(obj) is str: 
3.         for elm in app.GetCalcRelevantObjects(obj): 
4.             elmRes.AddVariable(elm, param) 
5.     elif type(obj) is list: 
6.         for elm in obj: 
7.             elmRes.AddVariable(elm, param) 
8.     else: 
9.         elmRes.AddVariable(obj, param) 

Figure 10: Creating a function for result variables 

1.4.2 Selecting the required grid elements 

To evaluate dynamic system performance for various fault locations, 12 different 

buses throughout the system are selected by utilizing the created 

getSelectedElements() function, as shown in Figure 11. 

1. # List of bus names of interest 
2. fault_buses_of_interest = ['4042','4043','4044','4041','4062', 
3. '4031','4032','1041','1042','1043','1044','1045']  
4. fault_buses = [] # Empty list to which we will add the buses 
5. # Load all terminals (buses) 
6. all_buses = app.GetCalcRelevantObjects("*.ElmTerm")  
7. # Select the ones of interest by using the pre-defined function 
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8. fault_buses = 
getSelectedElements(all_buses,fault_buses_of_interest) 

Figure 11: Selecting the buses of interest for simulating faults 

The variable fault_buses now contains the selected 12 buses of interest. This list 

shall be automatically looped through to change the fault location during the 

analysis. Similarly as in Figure 11, one can select other objects of interest, such as 

loads and DERs defined in Chapter 1.3, and buses for which the output variables 

are to be monitored (in this case short-term voltages). Furthermore, folders that 

contain the WECC Dynamic Load scripts shall be also selected. This is all 

illustrated in Figure 12. 

1. ## List of loads 
2. load_names_of_interest = ['01','02','03','04', 
3.                           '05','41','42','43','46','47','51'] 
4. loads = []    
5. all_loads = app.GetCalcRelevantObjects('*.ElmLod') 
6. loads = getSelectedElements(all_loads,load_names_of_interest) 
7. ## List of DERs 
8. DER_names_of_interest = 

['DER(1)','DER(2)','DER(3)','DER(4)','DER(5)','DER(41)', 
9.  'DER(42)','DER(43)','DER(46)','DER(47)','DER(51)'] 
10. all_DERs = app.GetCalcRelevantObjects('*.ElmGenstat')    
11. DERs = [] 
12. DERs = getSelectedElements(all_DERs,DER_names_of_interest) 
13. ## List of buses for variables output 
14. buses_of_interest = ['1041','1042','1043','1045','4041', 
15.                      '4042','4043','4046','4047','4051'] 
16. buses = [] 

17. buses = getSelectedElements(all_buses,buses_of_interest)  
18.  
19. # Selecting WECC load folders 
20. Nordic = app.GetCalcRelevantObjects('Nordic.ElmNet')[0] 
21. all_folders = Nordic.GetContents()          
22. folders = [] 
23. folders_of_interest = ['WECC CMPLDW (01)', 'WECC CMPLDW (02)',  
24.     'WECC CMPLDW (03)', 'WECC CMPLDW (04)','WECC CMPLDW (05)',  
25.     'WECC CMPLDW (41)', 'WECC CMPLDW (42)','WECC CMPLDW (43)', 
26.     'WECC CMPLDW (46)', 'WECC CMPLDW (47)','WECC CMPLDW (51)'] 
27. folders = getSelectedElements(all_folders,folders_of_interest) 

Figure 12: Selecting other elements of interest (loads, DERs, WECC folders) 
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Now that the required WECC folders are located, we can loop through them to get 

the DPL and DSL objects of relevance that can be used to adjust the dynamic load 

model parameters in simulations. The code is shown in Figure 13. 

1. scripts = [] 
2. DSLs_motors = []  
3.               
4. for i in range(0,len(folders)): 
5.     scripts.append(folders[i].GetContents('*.ComDpl',1)[0]) 
6.         
7. for i in range(0,len(folders)): 
8.     DSLs_motors.append(folders[i].GetContents('Motor D dynamic 

model.ElmDsl',1)[0]) 

Figure 13: Selecting WECC scripts and DSL files for D-motors 

A similar process can be repeated to access other dynamic model parameters, such 

as parameters of motors A/B/C, static load, feeder(s) parameters, etc. 

Finally, to access DER dynamic parameters, their respective DSL files need to be 

selected, as shown in Figure 14. 

1. DSL_names_of_interest = ['DER (01)','DER (02)','DER (03)','DER 
(04)','DER (05)','DER (41)', 'DER (42)','DER (43)','DER 
(46)','DER (47)','DER (51)']            

2. DSLs = [] 
3. all_DSLs = app.GetCalcRelevantObjects('*.ElmDsl') 
4.               
5. for i in range(0,len(DSL_names_of_interest)): 
6.     for z in range(0,len(all_DSLs)): 
7.         if str(all_DSLs[z].chr_name) == 

DSL_names_of_interest[i]: 
8.             DSLs.append(all_DSLs[z]) 

Figure 14: Selecting WECC scripts and DSL files for D-motors 

Notice that the pre-defined function was not used in this instance, as these DSL 

objects are collected based on the chr_name characteristic instead of loc_name. This 

can be of course integrated into the function (or loc_name of DSLs can be adjusted 

so the function can be also used) if desired. 

The following lists are therefore collected so far: 

- List of 12 different fault buses (fault_buses) 
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- List of 11 static loads in the central area (loads) 

- List of 11 WECC dynamic loads (and D-motor DSLs) in the central area 

(scripts and DSLs_motors) 

- List of 11 DERs (and their DSLs) in the central area (DERs and DSLs) 

- List of 10 buses for which the STVS will be evaluated (buses) 

1.4.3 Initializing the script 

First, several empty arrays are initialized as shown in Figure 15, which shall be used 

to organize the results. 

1. Sim_number = 0 #counter 
2.   
3. output_size = 1320 # total amount of planned simulations 
4. Output_Iteration_number = np.zeros(output_size) 
5. Output_Load_ratio = np.zeros(output_size)        
6. Output_Motor_A_share = np.zeros(output_size) 
7. Output_Motor_B_share = np.zeros(output_size) 
8. Output_Motor_C_share = np.zeros(output_size) 
9. Output_Motor_D_share = np.zeros(output_size) 
10. Output_Fault_bus = np.zeros(output_size) 
11. Output_Instability = np.zeros(output_size) 
12. Indexes_3s = np.zeros(output_size) 
13. Motors_case_output = np.zeros(output_size) 

Figure 15: Initializing several empty arrays to be used for results 

Ten different cases of dynamic load types and percentages are defined in the matrix 

Motor_abcd_matrix so that the impact of various motors on STVS can be 

evaluated. Next, a load_ratio_vector is defined, which shall be used to define the 

ratio of static/dynamic load in the grid, from zero to 50% in 5% steps (Figure 16). 

More details on both can be found in [2]. 

1. #Share of motors for 10 ABCD scenarios           #Case  
2. Motor_abcd_matrix = ([0,    0,    0,    0],          #0    'N' 
3.                      [0.15, 0.15, 0.15, 0.15],       #1    '0' 
4.                      [0.3,  0.1,  0.1,  0.1],        #2    'A' 
5.                      [0.45, 0.05, 0.05, 0.05],       #3    'AA' 
6.                      [0.1,  0.3,  0.1,  0.1],        #4    'B' 
7.                      [0.05, 0.45, 0.05, 0.05],       #5    'BB' 
8.                      [0.1,  0.1,  0.3,  0.1],        #6    'C' 
9.                      [0.05, 0.05, 0.45, 0.05],       #7    'CC' 
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10.                      [0.1,  0.1,  0.1,  0.3],        #8    'D' 
11.                      [0.05, 0.05, 0.05, 0.45],)      #9    'DD' 
12.   
13. Load_ratio_vector = [1, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65,      

0.6, 0.55, 0.5] 

Figure 16: Initializing dynamic load type and penetration scenarios 

1.4.4 Scripting: Inside the loops 

Now everything is ready for creating the scripting scenarios. This shall be done by 

nesting three for loops, as shown in Figure 17. The first loop (x) shall go through 

different penetration of dynamic loads, defined through the Load_ratio_vector 

variable. The second loop (y) will select the dynamic motor types scenarios, defined 

in the Motor_abcd_matrix variable. Finally, the third loop (z) will be used to 

change the fault location by utilizing the list of buses pre-defined in fault_buses. 

1. #-------------Set up simulation cases-------------------------- 
2. for x in range(0, len(Load_ratio_vector)):  # Loop 1  
3.     Load_ratio = Load_ratio_vector[x] 
4.     for y in range(0, len(Motor_abcd_matrix)):  # Loop 2 
5.         Motors_abcd = Motor_abcd_matrix[y]    
6.         for z in range(0, len(fault_buses)):       # Loop 3 
7.             Fault_bus = fault_buses[z] 

Figure 17: Defining three nested for loops for scripting 

With the defined variables, there is a total of 1320 simulations inside the three 

nested for loops (11 x 10 x 12). Each simulation shall be a dynamic simulation 

performed within PowerFactory, lasting 8 seconds (defined in Figure 8). For each 

iteration, the Python script adjusts the parameters as selected. 

Inside the three loops, each iteration needs to be initialized. First, load flow data is 

calculated and implemented. For this, nominal values are defined [6], and each 

load’s power flow is then adjusted by the Load_ratio of the current iteration. 

1. P_nom = [600, 330, 260, 840, 720, 540, 400, 900, 700, 100, 800] 
2. Q_nom = [148, 71, 84, 252, 190, 131, 127, 254, 212, 44, 258] 
3. # Load flow for static loads, see [2, 6]             
4. for i in range(0,len(loads)):   
5.     loads[i].plini = P_nom[i]*Load_ratio  
6.     loads[i].qlini = Q_nom[i]*Load_ratio  
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7. ## Load flow for dynamic loads 
8. for i in range(0,len(scripts)):                  
9.     scripts[i].SetInputParameterDouble('Pset', P_nom[i] - 

loads[i].plini + 0.1) # 0.1 added to avoid errors due to = 0 
10.     scripts[i].SetInputParameterDouble('Qset', Q_nom[i] - 

loads[i].qlini + 0.1) 
11.                   
12.     scripts[i].SetInputParameterDouble('Fma', Motors_abcd[0]) 
13.     scripts[i].SetInputParameterDouble('Fmb', Motors_abcd[1]) 
14.     scripts[i].SetInputParameterDouble('Fmc', Motors_abcd[2]) 
15.     scripts[i].SetInputParameterDouble('Fmd', Motors_abcd[3]) 
16.     scripts[i].SetInputParameterDouble('Fel', 0.15) 

1.     scripts[i].Execute() # execute to update the settings! 

Figure 18: Setting the load flow and parameters of static and dynamic loads 

Next, the load flow for WECC dynamic loads is defined. As the goal is to test how 

different load composition affects the STVS, the total load needs to remain the same, 

i.e. nominal values. Therefore, each WECC load has a power flow of the difference 

between the nominal load and the corresponding static load. This can be done by 

using the scripts list defined previously, to access the relevant parameters for P, 

Q, and dynamic motor share, per type. The lines of code are depicted in Figure 18. 

As DERs are not considered in the first part of the analysis, they can be all set out 

of service by a simple line of code shown in Figure 19. 

2. for i in range(0,len(DERs)): 
3.     DERs[i].outserv = 1 

Figure 19: Setting all DERs to ‘out-of-service’ 

Since all the variables of interest are now initialized, it is time to implement the 

simulation fault scenarios, and then initialize and run the simulations. An example 

of how to implement this is given in Figure 20. 

1. comInc = app.GetFromStudyCase("ComInc") 
2. comSim = app.GetFromStudyCase("ComSim") 
3. comInc.Execute() # Run initial conditions 
4. setupSimultation(comInc, comSim) 
5.   
6. clearSimEvents() # Delete existing (previous) simulation events 
7. faultFolder = 

app.GetFromStudyCase("Simulationsereignisse/Fehler") 
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8. SC_element = Fault_bus # Current fault bus object from loop z 
9.   
10. time = 1 # Fault time 
11. clearTime = 1.1 # Fault clearing time 
12. faultType = 0  # Fault type; 0 is 3-phase short-circuit 
13. faulClear = 4  # Fault type; 4 is fault clearing 
14. R = 20 # Fault resistance 
15. X = 0 # Fault reactance 
16.               
17. addFaultEvent(SC_element, time, faultType, R, X)  #Add SC event 
18. addFaultEvent(SC_element, clearTime, faulClear, R, X) #Clear  
19. runSimulation(comInc, comSim) # Run simulation 

Figure 20: Simulation events, initialization, and running of simulations 

As iterations in the z-loop take place, different fault buses will be selected, as 

defined in the Fault_bus variable. An RMS dynamic simulation will be performed 

for each iteration, varying the dynamic load percentage, load composition, and fault 

location, by using loops x, y, and z, respectively. 

1.4.5 Outputs of simulations 

The output results need to be defined, organized, and automatized. Therefore, the 

result files are updated with the variables of interest. In Figure 21, it is shown how 

each simulation (iteration) is finished by saving a corresponding CSV file that 

contains all the relevant variables. 

1. COMRES = app.GetFromStudyCase("ASCII Results Export.ComRes") 
2. ElmRes = app.GetCalcRelevantObjects("*.ElmRes")[0] 
3. # Adding all the voltage variables to COMRES/ElmRes so they are 

# exported to csv files                        
4. for i in range(0,len(buses)):         
5.     addRecordedResult(ElmRes, buses[i], "m:u1")         
6.               
7. COMRES.element = [] # reset values 
8. COMRES.variable = []            
9. COMRES.element = [ElmRes] + buses #select time and voltages 
10. COMRES.variable = ["b:tnow"] + len(buses)*['m:u1'] 
11.                                  
12. COMRES.iopt_exp = 6 # type 6 is a csv file 
13. COMRES.f_name = (r'C:\Users\aboricic\PLOTS' + '\\' + 

str(Sim_number) + '_STVS.csv') # Sim_number used for file names 
14. COMRES.Execute() 
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Figure 21: Defining variables of interest for results and outputs 

To evaluate STVS, the methodology described in Figure 22 is used. More details 

on this methodology can be found in [2], while an overview of common STVS 

evaluation methods can be found in [17], as well as more discussion in [4]. 

 

Figure 22: Methodology for STVS evaluation with an example [2] 

This is implemented in the Python code as displayed in Figure 23. 

1. voltages = pd.DataFrame(pd.read_csv(COMRES.f_name, skiprows=0, 
decimal='.')) 

2.               
3. DataSet = voltages.loc[2:].apply(pd.to_numeric) 
4. DataSet.columns = ['Time'] + buses_of_interest 
5. DataSet.reset_index(drop=True,inplace=True) 
6.   
7. t_round = np.floor(DataSet['Time'])  
8. for i, time in enumerate(t_round): # Find index for t=3sec 
9.     if time == 3: 
10.         index_3s = i 
11.         break 
12.                  
13. Instability = 0    # Apply the methodology from Figure 22 
14. if ((DataSet.iloc[index_3s:,1:] > 1.2).values.any() == True) or 

((DataSet.iloc[index_3s:,1:] < 0.8).values.any() == True): 
15.     Instability = 1 

Figure 23: Code for differentiating stable and unstable STVS cases 

Lastly, all the results are organized in an excel sheet, so they can be easily extracted 
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and visualized as heatmaps. This is indicated in Figure 24. Alternatively, it could 

be also done using the built-in .append() function. 

1. Output_Iteration_number[Sim_number-1] = Sim_number             
2. Output_Load_ratio[Sim_number-1] = Load_ratio          
3. Output_Motor_A_share[Sim_number-1] = Motors_abcd[0] 
4. Output_Motor_B_share[Sim_number-1] = Motors_abcd[1] 
5. Output_Motor_C_share[Sim_number-1] = Motors_abcd[2] 
6. Output_Motor_D_share[Sim_number-1] = Motors_abcd[3] 
7. Output_Fault_bus[Sim_number-1] = int(Fault_bus.loc_name) 
8. Output_Instability[Sim_number-1] = Instability 
9. Indexes_3s[Sim_number-1] = index_3s 
10. Motors_case_output[Sim_number-1] = y   
11. ## Following code is out of loops                        

Figure 24: Organizing the data in an overview file 

It is important to keep in mind that these last lines (Figure 25) of the code should be 

outside of the three nested loops. Otherwise, a file would be created for each 

iteration, instead of a final single overview file. 

1. Data = {'Simulation Number': Output_Iteration_number, 
2.         'Load Ratio': Output_Load_ratio, 
3.         'Motor A share': Output_Motor_A_share, 
4.         'Motor B share': Output_Motor_B_share, 
5.         'Motor C share': Output_Motor_C_share, 
6.         'Motor D share': Output_Motor_D_share, 
7.         'Fault Bus': Output_Fault_bus, 
8.         'Instability': Output_Instability, 
9.         'Index_3sec': Indexes_3s, 
10.         'Motors_case': Motors_case_output} 
11. DataFrame = pd.DataFrame(Data, columns = ['Simulation Number', 

'Load Ratio', 'Motor A share', 'Motor B share', 'Motor C share',  
12. 'Motor D share', 'Fault Bus','Instability','Index_3sec', 

'Motors_case']) 
13. DataFrame.to_excel(r'C:\Users\aboricic\Results\Simulations 

Overview.xlsx', index = False, header=True) 

Figure 25: Saving the data in an overview file 

The output excel sheet with 1320 rows (simulations) is exemplified in Figure 26. 
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Figure 26: Example of the output overview excel file 

After the simulations have been completed and the results saved, visualization can 

be performed in a separate Python notebook. The code in Figure 27 takes the .xlsx 

file and plots it on a heatmap, as in [2]. Furthermore, each case visualization or 

further analysis can be performed with saved CSV files. Some of it is shown in [2]. 

1. import numpy as np 
2. import pandas as pd 
3. from pandas import DataFrame 
4. import seaborn as sns 
5. import matplotlib.pyplot as plt  
6. DataSet = pd.read_excel('Simulations Overview_WECC.xlsx', 

index_col=0) 
7. # Loop sizes we used 
8. x=10 
9. y=11 
10. z=12 
11. ##--------Selecting and reshaping the data as desired--------- 
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12. # Select the instability column and split it into several equal 
arrays that represent a case scenario for all buses 

13. B = np.array_split(DataSet['Instability'].iloc[:x*y*z], x*y)  
14. Instab_sum = [] 
15. # Sum instability numbers to get the number of instabilities per 

case scenario for all buses 
16. for i in range (0,len(B)): 
17.     Instab_sum.append(sum(B[i]))        
18. heatmap = np.reshape(Instab_sum, (11, 10)).T # Form a matrix for 

the heatmap shape 
19. heatmap = np.delete(heatmap, 0, 1) # First column not needed 
20. #labels   
21. Motors_case = ['0','N','A','AA','B','BB','C','CC','D','DD'] 
22. Load_ratio = [5,10,15,20,25,30,35,40,45,50] #See Figure 16 
23.    
24. heatmap = pd.DataFrame(heatmap, index=Motors_case, 

columns=Load_ratio) # Make dataframe for plotting 
25.    
26. # Plotting the heatmap 
27. heatmap_plot = sns.heatmap(heatmap, linewidths=.5, annot=True, 

cmap="RdYlGn_r",cbar_kws={'label': 'Number of unstable cases'}) 
28.    
29. plt.tight_layout() 
30. plt.title("Influence of WECC Dynamic Load on STVS") 
31. plt.xlabel("WECC Dynamic Load Percentage [%]", fontsize=12) 
32. plt.ylabel("Motor case scenario", fontsize=12) 
33.    
34. plt.gcf().subplots_adjust(bottom=0.15) 
35. plt.gcf().subplots_adjust(left=0.1) 

Figure 27: Code for plotting the heatmap from the simulations overview file 

The resulting plot, which shows the number of STVS unstable simulations per 

scenario, is given in Figure 28. Utilizing the number of unstable cases as a relevant 

metric, the heatmap indicates a couple of things: (i) how different dynamic load 

percentage affects STVS; (ii) how different dynamic load compositions affect 

STVS. From the heatmap, one can conclude that larger dynamic load penetrations 

degrade STVS, with D-type motors (e.g. single-phase A/C units) significantly 

affecting STVS, unlike B-type motors (e.g. ventilation systems). Further discussion 

on the results and various related analyses can be found in [2]. 
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Figure 28: Heatmap resulting from 1320 dynamic simulations [2] 

Except for the described analysis, several more analyses of a similar type are 

performed in [2]. Besides dynamic loads, the impact of DERs and their respective 

control strategy on STVS was analysed. This was also performed through Python 

scripting, and some of the relevant code additions necessary for the study are 

indicated in Figure 29. 

1. # Select all the synchronous generators 
2. generators = getSelectedElements('*.ElmSym') 
3. P_nom_gen = # [...] Nominal generators’ power data from [2,6] 
4. for i in range(0,len(generators)): 
5.     gen[i].pgini = P_nom_gen[i] * Gen_ratio  
6. # Gen_ratio can be defined/looped similarly to load_ratio 
7.                   
8. # set power for each DER   
9. DER_p = # ...  depending on the desired scenario 
10. # in [2] it is used to replace Synch. Gen. power 
11. for i in range(0,len(DERs)): 
12.     DERs[i].outserv = 0  
13.     DERs[i].sgn = DER_p 
14.     DERs[i].pgini = DER_p 
15.     DERs[i].Pmax_ucPU = DER_p 
16.     DERs[i].Pmax = DER_p 
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17.         
18. # Define the control strategy of DERs  
19. # (ride-through Q-priority example, see Table A1 in [2])        
20. for i in range(0,len(DSLs)): 
21.     DSLs[i].vl0 = 0.15    # Voltage break-point  
22.     DSLs[i].vl1 = 0.9     # Voltage break-point  
23.     DSLs[i].tvl0 = 0.1    # Timer for vl0 
24.     DSLs[i].tvl1 = 1.5    # Timer for vl1 
25.     DSLs[i].Vtripflag = 0 # Enable voltage trip 
26.     DSLs[i].Pqflag = 0    # P/Q priority 
27.   
28. # Example parameters to simulate FIDVR (see Section 4.3 in [2]) 
29. for i in range(0,len(DSLs_motors)): 
30.     DSLs_motors[i].Vstall = 0.55 #Voltage at which A/Cs stall 
31.     DSLs_motors[i].Tstall = 0.3 #Time needed to stall (<Vstall) 
32.     DSLs_motors[i].Frst = 0.2  #Ratio that recovers post-FIDVR 

Figure 29: Extra code example for various parametrization of WECC 

dynamic models and DER_A models used in [2, 4] 

By utilizing approaches described so far, results such as the ones shown in Figure 

30 are achieved. In a similar concept as Figure 28, the heatmaps provide the 

following insights: (i) how different penetrations of DER affect STVS, per control 

type; (ii) how different dynamic load compositions affect DER-penetrated systems’ 

STVS, per DER control type; (iii) how DER units interact with different dynamic 

load models, per control type. One important conclusion that can be derived from 

the heatmap is that DER ride-through control strategies (P- and especially Q-

priority) are much more favourable for preserving STVS, compared to 

disconnection and momentary cessation. Such a conclusion is more emphasized as 

DER penetration is increased. This can be concluded from the dominantly green 

right parts of the lower heatmaps, compared to the upper ones. A more detailed 

discussion of these results can be found in [2]. 
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Figure 30: Heatmaps resulting from thousands of simulations for varying 

DER penetration and control, as well as load composition [2] 

For a broader discussion on these and further related findings, as well as more 

details on the model, methodology, and scripting, curious readers are once again 

referred to [2]. Furthermore, another example of a similar scripting approach is 

presented in [4], where various short-term instabilities are modelled and quantified 

in a more advanced manner. 

1.5 Conclusions 

 

Evaluating complex dynamic phenomena in modern power systems is an 

exceedingly broad and challenging task. System stability, as one of the most 

important aspects of power system analysis, is becoming increasingly complex to 

model, evaluate, and ultimately maintain. The sheer number and complexity of 

inverter-based resources and dynamic loads often make these studies 

unmanageable. This is where programming and data science support from Python, 
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combined with advanced simulation software such as DIgSILENT PowerFactory, 

may bring tremendous value going forward. The described approach in this chapter 

highlights how short-term voltage stability concerns can be analysed efficiently 

regardless of the high system complexity. Despite the approach being focused on 

one specific aspect of power system analysis, the underlying concept of scripting 

for rapid scenario variation is widely applicable. The linkage between 

PowerFactory and Python creates enormous possibilities that are ultimately 

necessary for accelerating the energy transition. Finally, considering the well-

established data science and machine learning libraries present in Python, the ability 

to apply these advanced data techniques to power systems easier and within the 

PowerFactory simulation environment presents a vast source of opportunities.  
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