
PowerFactory and Python Scripting for Evaluation of Active Distribution

Networks Impact on Grid Short-term Voltage Stability

Aleksandar Boričić, Jose Luis Rueda Torres, Marjan Popov

Delft University of Technology, Faculty of EEMCS, Delft, the Netherlands

a.boricic@tudelft.nl, J.L.RuedaTorres@tudelft.nl, M.Popov@tudelft.nl

Abstract

This chapter deals with improving the understanding of the

driving parameters of short-term voltage stability in modern

power systems. The approach utilizes DIgSILENT PowerFactory

2020 SP2A paired with Python API, enabling the evaluation of a

complex multivariable problem efficiently by running a large

number of dynamic simulations automatically. The presented

approach is not only limited to short-term voltage stability, but

can be also utilized for various large-scale dynamic studies. As

systems shift towards more complexity in both generation and

consumption, similar studies shall become indispensable in the

power systems field.

Keywords: DIgSILENT Dynamic Simulation, Python Scripting, Short-Term

Voltage Stability, Distributed Energy Resources, Dynamic loads

2

1.1 Introduction

The number of distributed energy resources (DER) is increasing rapidly in power

systems worldwide. Coincidentally, the number and complexity of dynamic loads

are also growing. This leads to increasingly intricate and relevant impacts of Active

Distribution Networks (ADN) on the overall system dynamics and stability.

Furthermore, as synchronous generation is phased out, system strength and inertia

are decreased, and system dynamics are enhanced and accelerated. Short-term

voltage stability consequently becomes one of the major issues that renewables-

driven power systems are facing. It is therefore of the uttermost importance to be

able to simulate and analyse grid stability comprehensively, even with a large

number of components and possible control parameters that define their operation.

However, this is a complex multivariable challenge that requires an innovative

approach. Utilizing advanced simulation software such as DIgSILENT

PowerFactory is necessary and valuable [1], but often not sufficient. There is also a

need for a programming interface to automate simulations for a large number of

potential operational scenarios and parameters. As power systems digitalize and

move towards control-driven dynamics, rather than electromechanical, the ability

to perform dynamic simulations with a wide range of parameters efficiently is vital.

This chapter describes a fundamental study on short-term voltage stability, utilizing

some of the most advanced voltage stability models in the process. The dynamic

analysis is automatized with Python, enabling the efficient execution of thousands

of simulations with varying operating conditions and relevant parameters. The

original analysis is performed in [2], where further technical details can be found.

The chapter is organized as follows. Section 1.2 briefly describes the problematics

of short-term voltage stability and the effects of active distribution networks and

their parameters. Section 1.3 introduces the test models. In Section 1.4, the utilized

Python scripting and its benefits are demonstrated, with detailed codes and relevant

simulation results. Finally, Section 1.5 concludes the chapter.

3

1.2 Power Systems Short-term Voltage Stability

Systems are as strong as their weakest link. With the decentralization of power

systems generation, as well as intricate technical challenges brought by inverter-

based resources (IBRs) and dynamic loads, finding the weakest link and its

interactions with other elements in the system becomes exceptionally difficult.

Meanwhile, preventing power system instability and its consequences such as

blackouts is crucial in the interconnected and electricity-powered society. To

prevent it, one must first understand it and be able to model it accurately. Power

system stability is commonly defined as follows [3]:

Power system stability is the ability of an electric power system, for a given initial

operating condition, to regain a state of operating equilibrium after being subjected

to a physical disturbance, with most system variables bounded so that practically

the entire system remains intact.

It comprises several different classes. The most recent commonly accepted

definition and classification of stability were established in [3]. This classification

is presented in Figure 1.

Figure 1: Classification of power system stability [3]

This chapter focuses on short-term stability, particularly short-term voltage stability

(STVS). Furthermore, a holistic perspective of short-term instabilities is taken,

where each instability mechanism is described in Figure 2. A more detailed

discussion on this can be found in [2, 4] and is omitted from this chapter for brevity.

Power System Stability

Resonance
Stability

Converter-
Driven Stability

Rotor Angle
Stability

Voltage
Stability

Frequency
Stability

Electrical Torsional

Short-term

Fast
interactions

Slow
interactions Transient

Small-
disturbance

Small-
disturbance

Large-
disturbance

Long-term Short-term Long-term

4

Figure 2: A concise overview of the four distinctive short-term instability

phenomena, characteristics, and illustrative voltage deviations [4].

In the past, long-term voltage stability has generally been the focus of academia and

industry. However, short-term (voltage) instability becomes much more

pronounced with the proliferation of distributed energy resources (DER) and

various types of dynamic loads such as induction motors and electronically

controlled motors [2]. This presents a challenge as distribution networks become

Active Distribution Networks (ADNs), with a potentially significant impact on

system stability [2, 5]. This impact ought to be analysed in modern power systems,

which is the goal of the presented analysis.

Meanwhile, parameter uncertainty is the other very important aspect that limits the

ability to analyse the impacts of ADN on bulk power systems comprehensively.

This is where DIgSILENT PowerFactory and Python API synergy may provide

significant benefits, as showcased in the following sections.

1.3 Model and Methodology Description

To study STVS, the usage of suitable models is a very important first step. Simple

models are unable to represent relevant dynamics that occur and lead to short-term

instabilities. For this study, the advanced test grid for voltage stability is utilized:

5

IEEE Test System for Voltage Stability Analysis and Security Assessment [6]. The

grid is based on the Nordic Power System, and its single-line diagram and

description are provided in Figure 3.

Figure 3: IEEE Test System for Voltage Stability Analysis and Security

Assessment [6], with blue circles indicating ADN locations [2]

To study the impacts of ADNs on STVS, it is necessary to introduce representative

models of ADNs in the test system. For this task, the latest advanced dynamic load

and DER models are introduced to the test system in locations depicted in blue in

6

Figure 3. Such model enhancements improve the ability to represent the dynamic

behaviour seen in real modern grids.

Figure 4 describes the WECC Composite Load Model, commonly utilized to

represent the aggregated response of various dynamic loads [7-9]. The model

consists of three different types of 3-phase motors (A, B, and C), a single-phase A/C

motor (D), electronic load, and static load. Furthermore, feeders and busbars are

also modelled. The entire model is available in DIgSILENT templates library, under

Loads, titled WECC Dynamic Composite Load. The model is very attractive in

representing numerous load-grid dynamics that common static models such as the

ZIP model simply cannot reproduce. More discussion on the benefits and details of

this model can be found in [7-9].

Figure 4: WECC Composite Load model (incl. DER_A model) [2]

Furthermore, distributed generation is also represented in these ADNs. The cutting-

edge model for representing DERs in bulk power system stability studies is the

DER_A model, with its diagram depicted in Figure 5. The DER_A model is a

successor of the well-known PVD1 model, with enhanced abilities to characterize

various control strategies of a distributed generator with high fidelity in both static

and dynamic operation. It is therefore introduced alongside the WECC load model

for a complete ADN model, utilizing DIgSILENT template WECC DER

Generation. Details on the DER_A model, its usage, validation, parametrization,

etc. can be found in [9-13].

7

Figure 5: The detailed diagram of the DER_A model [10]

All these models are incorporated together as shown in Figure 3, which creates

possibilities to evaluate short-term instabilities in various operational settings.

However, this is an extremely broad task, as the derived system has many

parameters that may have large effects on system stability. To unpack and

understand these effects, running simulations manually one by one is unfeasible

from the time perspective. Instead, a massive number of simulations need to be

performed automatically, which is where Python API provides enormous benefits.

Figure 6 depicts interactions and data exchange between the created Python script

and DIgSILENT PowerFactory through Python API.

Figure 6: Exchange of data between Python and DIgSILENT PowerFactory

Chapter 1.4 describes in detail how the Python script is created to analyse the STVS

of the created test system efficiently, with several varying parameters of interest.

DIgSILENT PowerFactory

Python

API

 Update the grid parameters

 Update the fault event(s)

 Update the power flow data

 Initialize and perform simulations

 Save and export results

 Define functions and study cases

 Automatize parameters selection

 Define simulation scripting

… wait for the results from PF

 Organize and plot the results

Simulation results (csv)

Data for parameters,

events, and load flows

Python Script

8

1.4 Python Scripting and Simulation Results

In this section, the Python code used in the analyses will be shown in detail. Deeper

discussions on some aspects are omitted and some parts were simplified for brevity.

Where missing, the reader is advised to look for further explanations in [2]. The

entire analysis is performed in Python 3.8.3 (using Jupyter Notebook) and

DIgSILENT PowerFactory 2020 SP2A in the graphical user interface (GUI) [14,

15]. Alternatively, it is also possible to run simulations and the script (with minor

adjustments) in the so-called engine mode, where an external Python script can run

PowerFactory without the need for GUI. More details on this can be found in [14-

15], with some examples in [16].

1.4.1 Libraries and functions

First, the libraries that shall be used in the script need to be imported (Figure 7). It

is particularly important to make sure that the powerfactory module is successfully

imported, so Python API can run. It may be necessary to check and adjust the Python

path in case of an error and check if the compatible versions are used.

1. import sys
2. import powerfactory as pf
3. import numpy as np
4. import pandas as pd
5. app = pf.GetApplication()
6. if app is None:
7. raise Exception("Getting PowerFactory application failed")

Figure 7: Importing necessary libraries

As this script will be relatively long with possible repetitiveness, it is convenient to

define several functions to be used. Firstly, two functions for preparing and running

simulations are created and shown in Figure 8. Next, two functions for defining

simulation events are created. These functions will be used to adjust fault

parameters such as fault time, location, duration, impedance, etc. automatically.

1. def setupSimultation(comInc, comSim):
2. # Initializiation

9

3. comInc.iopt_sim = "rms"
4. comInc.start = 0
5. # Defining simulation time
6. comSim.tstop = 8
7.
8. def runSimulation(comInc, comSim):
9. app.EchoOff() #disables PF user interface
10. comInc.Execute()
11. app.EchoOn()
12. comSim.Execute()

13. def clearSimEvents(): ## deletes all previous simulation events
14. faultFolder =

app.GetFromStudyCase("Simulationsereignisse/Fehler.IntEvt")
15. cont = faultFolder.GetContents()
16. for obj in cont:
17. obj.Delete()
18.
19. ## creates a new simulation fault event
20. def addFaultEvent(obj, sec, faultType, R, X):
21. faultFolder =

app.GetFromStudyCase("Simulationsereignisse/Fehler.IntEvt")
22. event = faultFolder.CreateObject("EvtShc", obj.loc_name)
23. event.p_target = obj # object that will be short-circuited
24. event.time = sec ## time instance when the fault occurs
25. event.i_shc = faultType ## fault type (e.g. 3-phase SC)
26. if faultType == 0:
27. event.R_f = R ## here we define fault R and X
28. event.X_f = X

Figure 8: Defining several functions

Next, to access a specific list of elements in the system shown in Figure 3, a

convenient function is created to avoid repeating the same line of code multiple

times. The code is shown in Figure 9.

1. ## returns the list of selected elements (in name order)
2. def getSelectedElements(all_elements,wanted_elements):
3. #takes a list of objects and a list of strings(names)
4. elements = []
5. for i in range(0,len(wanted_elements)):
6. for z in range(0,len(all_elements)):
7. if str(all_elements[z].loc_name) ==

wanted_elements[i]:
8. elements.append(all_elements[z])
9. if len(elements)==0:

10

10. raise Exception("Something went wrong, the returned
list is empty")

11. return elements

Figure 9: Defining a function for accessing grid elements of interest

The function getSelectedElements() works by collecting the list of passed

elements (wanted_elements) from the passed list of objects, by using the internal

loc_name characteristic of the objects. Later in the section, it will be shown how

this can be used to select a list of various elements such as buses, loads, generators,

etc. It is of course necessary to first define these corresponding names in

PowerFactory when creating the elements, so they can be accessed. This can also

be automatized by using DPL; however, this is out of the scope of this chapter.

Finally, a function to add result variables of interest for exporting is created as

shown in Figure 10.

1. def addRecordedResult(elmRes, obj, param):
2. if type(obj) is str:
3. for elm in app.GetCalcRelevantObjects(obj):
4. elmRes.AddVariable(elm, param)
5. elif type(obj) is list:
6. for elm in obj:
7. elmRes.AddVariable(elm, param)
8. else:
9. elmRes.AddVariable(obj, param)

Figure 10: Creating a function for result variables

1.4.2 Selecting the required grid elements

To evaluate dynamic system performance for various fault locations, 12 different

buses throughout the system are selected by utilizing the created

getSelectedElements() function, as shown in Figure 11.

1. # List of bus names of interest
2. fault_buses_of_interest = ['4042','4043','4044','4041','4062',
3. '4031','4032','1041','1042','1043','1044','1045']
4. fault_buses = [] # Empty list to which we will add the buses
5. # Load all terminals (buses)
6. all_buses = app.GetCalcRelevantObjects("*.ElmTerm")
7. # Select the ones of interest by using the pre-defined function

11

8. fault_buses =
getSelectedElements(all_buses,fault_buses_of_interest)

Figure 11: Selecting the buses of interest for simulating faults

The variable fault_buses now contains the selected 12 buses of interest. This list

shall be automatically looped through to change the fault location during the

analysis. Similarly as in Figure 11, one can select other objects of interest, such as

loads and DERs defined in Chapter 1.3, and buses for which the output variables

are to be monitored (in this case short-term voltages). Furthermore, folders that

contain the WECC Dynamic Load scripts shall be also selected. This is all

illustrated in Figure 12.

1. ## List of loads
2. load_names_of_interest = ['01','02','03','04',
3. '05','41','42','43','46','47','51']
4. loads = []
5. all_loads = app.GetCalcRelevantObjects('*.ElmLod')
6. loads = getSelectedElements(all_loads,load_names_of_interest)
7. ## List of DERs
8. DER_names_of_interest =

['DER(1)','DER(2)','DER(3)','DER(4)','DER(5)','DER(41)',
9. 'DER(42)','DER(43)','DER(46)','DER(47)','DER(51)']
10. all_DERs = app.GetCalcRelevantObjects('*.ElmGenstat')
11. DERs = []
12. DERs = getSelectedElements(all_DERs,DER_names_of_interest)
13. ## List of buses for variables output
14. buses_of_interest = ['1041','1042','1043','1045','4041',
15. '4042','4043','4046','4047','4051']
16. buses = []

17. buses = getSelectedElements(all_buses,buses_of_interest)
18.
19. # Selecting WECC load folders
20. Nordic = app.GetCalcRelevantObjects('Nordic.ElmNet')[0]
21. all_folders = Nordic.GetContents()
22. folders = []
23. folders_of_interest = ['WECC CMPLDW (01)', 'WECC CMPLDW (02)',
24. 'WECC CMPLDW (03)', 'WECC CMPLDW (04)','WECC CMPLDW (05)',
25. 'WECC CMPLDW (41)', 'WECC CMPLDW (42)','WECC CMPLDW (43)',
26. 'WECC CMPLDW (46)', 'WECC CMPLDW (47)','WECC CMPLDW (51)']
27. folders = getSelectedElements(all_folders,folders_of_interest)

Figure 12: Selecting other elements of interest (loads, DERs, WECC folders)

12

Now that the required WECC folders are located, we can loop through them to get

the DPL and DSL objects of relevance that can be used to adjust the dynamic load

model parameters in simulations. The code is shown in Figure 13.

1. scripts = []
2. DSLs_motors = []
3.
4. for i in range(0,len(folders)):
5. scripts.append(folders[i].GetContents('*.ComDpl',1)[0])
6.
7. for i in range(0,len(folders)):
8. DSLs_motors.append(folders[i].GetContents('Motor D dynamic

model.ElmDsl',1)[0])

Figure 13: Selecting WECC scripts and DSL files for D-motors

A similar process can be repeated to access other dynamic model parameters, such

as parameters of motors A/B/C, static load, feeder(s) parameters, etc.

Finally, to access DER dynamic parameters, their respective DSL files need to be

selected, as shown in Figure 14.

1. DSL_names_of_interest = ['DER (01)','DER (02)','DER (03)','DER
(04)','DER (05)','DER (41)', 'DER (42)','DER (43)','DER
(46)','DER (47)','DER (51)']

2. DSLs = []
3. all_DSLs = app.GetCalcRelevantObjects('*.ElmDsl')
4.
5. for i in range(0,len(DSL_names_of_interest)):
6. for z in range(0,len(all_DSLs)):
7. if str(all_DSLs[z].chr_name) ==

DSL_names_of_interest[i]:
8. DSLs.append(all_DSLs[z])

Figure 14: Selecting WECC scripts and DSL files for D-motors

Notice that the pre-defined function was not used in this instance, as these DSL

objects are collected based on the chr_name characteristic instead of loc_name. This

can be of course integrated into the function (or loc_name of DSLs can be adjusted

so the function can be also used) if desired.

The following lists are therefore collected so far:

- List of 12 different fault buses (fault_buses)

13

- List of 11 static loads in the central area (loads)

- List of 11 WECC dynamic loads (and D-motor DSLs) in the central area

(scripts and DSLs_motors)

- List of 11 DERs (and their DSLs) in the central area (DERs and DSLs)

- List of 10 buses for which the STVS will be evaluated (buses)

1.4.3 Initializing the script

First, several empty arrays are initialized as shown in Figure 15, which shall be used

to organize the results.

1. Sim_number = 0 #counter
2.
3. output_size = 1320 # total amount of planned simulations
4. Output_Iteration_number = np.zeros(output_size)
5. Output_Load_ratio = np.zeros(output_size)
6. Output_Motor_A_share = np.zeros(output_size)
7. Output_Motor_B_share = np.zeros(output_size)
8. Output_Motor_C_share = np.zeros(output_size)
9. Output_Motor_D_share = np.zeros(output_size)
10. Output_Fault_bus = np.zeros(output_size)
11. Output_Instability = np.zeros(output_size)
12. Indexes_3s = np.zeros(output_size)
13. Motors_case_output = np.zeros(output_size)

Figure 15: Initializing several empty arrays to be used for results

Ten different cases of dynamic load types and percentages are defined in the matrix

Motor_abcd_matrix so that the impact of various motors on STVS can be

evaluated. Next, a load_ratio_vector is defined, which shall be used to define the

ratio of static/dynamic load in the grid, from zero to 50% in 5% steps (Figure 16).

More details on both can be found in [2].

1. #Share of motors for 10 ABCD scenarios #Case
2. Motor_abcd_matrix = ([0, 0, 0, 0], #0 'N'
3. [0.15, 0.15, 0.15, 0.15], #1 '0'
4. [0.3, 0.1, 0.1, 0.1], #2 'A'
5. [0.45, 0.05, 0.05, 0.05], #3 'AA'
6. [0.1, 0.3, 0.1, 0.1], #4 'B'
7. [0.05, 0.45, 0.05, 0.05], #5 'BB'
8. [0.1, 0.1, 0.3, 0.1], #6 'C'
9. [0.05, 0.05, 0.45, 0.05], #7 'CC'

14

10. [0.1, 0.1, 0.1, 0.3], #8 'D'
11. [0.05, 0.05, 0.05, 0.45],) #9 'DD'
12.
13. Load_ratio_vector = [1, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65,

0.6, 0.55, 0.5]

Figure 16: Initializing dynamic load type and penetration scenarios

1.4.4 Scripting: Inside the loops

Now everything is ready for creating the scripting scenarios. This shall be done by

nesting three for loops, as shown in Figure 17. The first loop (x) shall go through

different penetration of dynamic loads, defined through the Load_ratio_vector

variable. The second loop (y) will select the dynamic motor types scenarios, defined

in the Motor_abcd_matrix variable. Finally, the third loop (z) will be used to

change the fault location by utilizing the list of buses pre-defined in fault_buses.

1. #-------------Set up simulation cases--------------------------
2. for x in range(0, len(Load_ratio_vector)): # Loop 1
3. Load_ratio = Load_ratio_vector[x]
4. for y in range(0, len(Motor_abcd_matrix)): # Loop 2
5. Motors_abcd = Motor_abcd_matrix[y]
6. for z in range(0, len(fault_buses)): # Loop 3
7. Fault_bus = fault_buses[z]

Figure 17: Defining three nested for loops for scripting

With the defined variables, there is a total of 1320 simulations inside the three

nested for loops (11 x 10 x 12). Each simulation shall be a dynamic simulation

performed within PowerFactory, lasting 8 seconds (defined in Figure 8). For each

iteration, the Python script adjusts the parameters as selected.

Inside the three loops, each iteration needs to be initialized. First, load flow data is

calculated and implemented. For this, nominal values are defined [6], and each

load’s power flow is then adjusted by the Load_ratio of the current iteration.

1. P_nom = [600, 330, 260, 840, 720, 540, 400, 900, 700, 100, 800]
2. Q_nom = [148, 71, 84, 252, 190, 131, 127, 254, 212, 44, 258]
3. # Load flow for static loads, see [2, 6]
4. for i in range(0,len(loads)):
5. loads[i].plini = P_nom[i]*Load_ratio
6. loads[i].qlini = Q_nom[i]*Load_ratio

15

7. ## Load flow for dynamic loads
8. for i in range(0,len(scripts)):
9. scripts[i].SetInputParameterDouble('Pset', P_nom[i] -

loads[i].plini + 0.1) # 0.1 added to avoid errors due to = 0
10. scripts[i].SetInputParameterDouble('Qset', Q_nom[i] -

loads[i].qlini + 0.1)
11.
12. scripts[i].SetInputParameterDouble('Fma', Motors_abcd[0])
13. scripts[i].SetInputParameterDouble('Fmb', Motors_abcd[1])
14. scripts[i].SetInputParameterDouble('Fmc', Motors_abcd[2])
15. scripts[i].SetInputParameterDouble('Fmd', Motors_abcd[3])
16. scripts[i].SetInputParameterDouble('Fel', 0.15)

1. scripts[i].Execute() # execute to update the settings!

Figure 18: Setting the load flow and parameters of static and dynamic loads

Next, the load flow for WECC dynamic loads is defined. As the goal is to test how

different load composition affects the STVS, the total load needs to remain the same,

i.e. nominal values. Therefore, each WECC load has a power flow of the difference

between the nominal load and the corresponding static load. This can be done by

using the scripts list defined previously, to access the relevant parameters for P,

Q, and dynamic motor share, per type. The lines of code are depicted in Figure 18.

As DERs are not considered in the first part of the analysis, they can be all set out

of service by a simple line of code shown in Figure 19.

2. for i in range(0,len(DERs)):
3. DERs[i].outserv = 1

Figure 19: Setting all DERs to ‘out-of-service’

Since all the variables of interest are now initialized, it is time to implement the

simulation fault scenarios, and then initialize and run the simulations. An example

of how to implement this is given in Figure 20.

1. comInc = app.GetFromStudyCase("ComInc")
2. comSim = app.GetFromStudyCase("ComSim")
3. comInc.Execute() # Run initial conditions
4. setupSimultation(comInc, comSim)
5.
6. clearSimEvents() # Delete existing (previous) simulation events
7. faultFolder =

app.GetFromStudyCase("Simulationsereignisse/Fehler")

16

8. SC_element = Fault_bus # Current fault bus object from loop z
9.
10. time = 1 # Fault time
11. clearTime = 1.1 # Fault clearing time
12. faultType = 0 # Fault type; 0 is 3-phase short-circuit
13. faulClear = 4 # Fault type; 4 is fault clearing
14. R = 20 # Fault resistance
15. X = 0 # Fault reactance
16.
17. addFaultEvent(SC_element, time, faultType, R, X) #Add SC event
18. addFaultEvent(SC_element, clearTime, faulClear, R, X) #Clear
19. runSimulation(comInc, comSim) # Run simulation

Figure 20: Simulation events, initialization, and running of simulations

As iterations in the z-loop take place, different fault buses will be selected, as

defined in the Fault_bus variable. An RMS dynamic simulation will be performed

for each iteration, varying the dynamic load percentage, load composition, and fault

location, by using loops x, y, and z, respectively.

1.4.5 Outputs of simulations

The output results need to be defined, organized, and automatized. Therefore, the

result files are updated with the variables of interest. In Figure 21, it is shown how

each simulation (iteration) is finished by saving a corresponding CSV file that

contains all the relevant variables.

1. COMRES = app.GetFromStudyCase("ASCII Results Export.ComRes")
2. ElmRes = app.GetCalcRelevantObjects("*.ElmRes")[0]
3. # Adding all the voltage variables to COMRES/ElmRes so they are

exported to csv files
4. for i in range(0,len(buses)):
5. addRecordedResult(ElmRes, buses[i], "m:u1")
6.
7. COMRES.element = [] # reset values
8. COMRES.variable = []
9. COMRES.element = [ElmRes] + buses #select time and voltages
10. COMRES.variable = ["b:tnow"] + len(buses)*['m:u1']
11.
12. COMRES.iopt_exp = 6 # type 6 is a csv file
13. COMRES.f_name = (r'C:\Users\aboricic\PLOTS' + '\\' +

str(Sim_number) + '_STVS.csv') # Sim_number used for file names
14. COMRES.Execute()

17

Figure 21: Defining variables of interest for results and outputs

To evaluate STVS, the methodology described in Figure 22 is used. More details

on this methodology can be found in [2], while an overview of common STVS

evaluation methods can be found in [17], as well as more discussion in [4].

Figure 22: Methodology for STVS evaluation with an example [2]

This is implemented in the Python code as displayed in Figure 23.

1. voltages = pd.DataFrame(pd.read_csv(COMRES.f_name, skiprows=0,
decimal='.'))

2.
3. DataSet = voltages.loc[2:].apply(pd.to_numeric)
4. DataSet.columns = ['Time'] + buses_of_interest
5. DataSet.reset_index(drop=True,inplace=True)
6.
7. t_round = np.floor(DataSet['Time'])
8. for i, time in enumerate(t_round): # Find index for t=3sec
9. if time == 3:
10. index_3s = i
11. break
12.
13. Instability = 0 # Apply the methodology from Figure 22
14. if ((DataSet.iloc[index_3s:,1:] > 1.2).values.any() == True) or

((DataSet.iloc[index_3s:,1:] < 0.8).values.any() == True):
15. Instability = 1

Figure 23: Code for differentiating stable and unstable STVS cases

Lastly, all the results are organized in an excel sheet, so they can be easily extracted

18

and visualized as heatmaps. This is indicated in Figure 24. Alternatively, it could

be also done using the built-in .append() function.

1. Output_Iteration_number[Sim_number-1] = Sim_number
2. Output_Load_ratio[Sim_number-1] = Load_ratio
3. Output_Motor_A_share[Sim_number-1] = Motors_abcd[0]
4. Output_Motor_B_share[Sim_number-1] = Motors_abcd[1]
5. Output_Motor_C_share[Sim_number-1] = Motors_abcd[2]
6. Output_Motor_D_share[Sim_number-1] = Motors_abcd[3]
7. Output_Fault_bus[Sim_number-1] = int(Fault_bus.loc_name)
8. Output_Instability[Sim_number-1] = Instability
9. Indexes_3s[Sim_number-1] = index_3s
10. Motors_case_output[Sim_number-1] = y
11. ## Following code is out of loops

Figure 24: Organizing the data in an overview file

It is important to keep in mind that these last lines (Figure 25) of the code should be

outside of the three nested loops. Otherwise, a file would be created for each

iteration, instead of a final single overview file.

1. Data = {'Simulation Number': Output_Iteration_number,
2. 'Load Ratio': Output_Load_ratio,
3. 'Motor A share': Output_Motor_A_share,
4. 'Motor B share': Output_Motor_B_share,
5. 'Motor C share': Output_Motor_C_share,
6. 'Motor D share': Output_Motor_D_share,
7. 'Fault Bus': Output_Fault_bus,
8. 'Instability': Output_Instability,
9. 'Index_3sec': Indexes_3s,
10. 'Motors_case': Motors_case_output}
11. DataFrame = pd.DataFrame(Data, columns = ['Simulation Number',

'Load Ratio', 'Motor A share', 'Motor B share', 'Motor C share',
12. 'Motor D share', 'Fault Bus','Instability','Index_3sec',

'Motors_case'])
13. DataFrame.to_excel(r'C:\Users\aboricic\Results\Simulations

Overview.xlsx', index = False, header=True)

Figure 25: Saving the data in an overview file

The output excel sheet with 1320 rows (simulations) is exemplified in Figure 26.

19

Figure 26: Example of the output overview excel file

After the simulations have been completed and the results saved, visualization can

be performed in a separate Python notebook. The code in Figure 27 takes the .xlsx

file and plots it on a heatmap, as in [2]. Furthermore, each case visualization or

further analysis can be performed with saved CSV files. Some of it is shown in [2].

1. import numpy as np
2. import pandas as pd
3. from pandas import DataFrame
4. import seaborn as sns
5. import matplotlib.pyplot as plt
6. DataSet = pd.read_excel('Simulations Overview_WECC.xlsx',

index_col=0)
7. # Loop sizes we used
8. x=10
9. y=11
10. z=12
11. ##--------Selecting and reshaping the data as desired---------

20

12. # Select the instability column and split it into several equal
arrays that represent a case scenario for all buses

13. B = np.array_split(DataSet['Instability'].iloc[:x*y*z], x*y)
14. Instab_sum = []
15. # Sum instability numbers to get the number of instabilities per

case scenario for all buses
16. for i in range (0,len(B)):
17. Instab_sum.append(sum(B[i]))
18. heatmap = np.reshape(Instab_sum, (11, 10)).T # Form a matrix for

the heatmap shape
19. heatmap = np.delete(heatmap, 0, 1) # First column not needed
20. #labels
21. Motors_case = ['0','N','A','AA','B','BB','C','CC','D','DD']
22. Load_ratio = [5,10,15,20,25,30,35,40,45,50] #See Figure 16
23.
24. heatmap = pd.DataFrame(heatmap, index=Motors_case,

columns=Load_ratio) # Make dataframe for plotting
25.
26. # Plotting the heatmap
27. heatmap_plot = sns.heatmap(heatmap, linewidths=.5, annot=True,

cmap="RdYlGn_r",cbar_kws={'label': 'Number of unstable cases'})
28.
29. plt.tight_layout()
30. plt.title("Influence of WECC Dynamic Load on STVS")
31. plt.xlabel("WECC Dynamic Load Percentage [%]", fontsize=12)
32. plt.ylabel("Motor case scenario", fontsize=12)
33.
34. plt.gcf().subplots_adjust(bottom=0.15)
35. plt.gcf().subplots_adjust(left=0.1)

Figure 27: Code for plotting the heatmap from the simulations overview file

The resulting plot, which shows the number of STVS unstable simulations per

scenario, is given in Figure 28. Utilizing the number of unstable cases as a relevant

metric, the heatmap indicates a couple of things: (i) how different dynamic load

percentage affects STVS; (ii) how different dynamic load compositions affect

STVS. From the heatmap, one can conclude that larger dynamic load penetrations

degrade STVS, with D-type motors (e.g. single-phase A/C units) significantly

affecting STVS, unlike B-type motors (e.g. ventilation systems). Further discussion

on the results and various related analyses can be found in [2].

21

Figure 28: Heatmap resulting from 1320 dynamic simulations [2]

Except for the described analysis, several more analyses of a similar type are

performed in [2]. Besides dynamic loads, the impact of DERs and their respective

control strategy on STVS was analysed. This was also performed through Python

scripting, and some of the relevant code additions necessary for the study are

indicated in Figure 29.

1. # Select all the synchronous generators
2. generators = getSelectedElements('*.ElmSym')
3. P_nom_gen = # [...] Nominal generators’ power data from [2,6]
4. for i in range(0,len(generators)):
5. gen[i].pgini = P_nom_gen[i] * Gen_ratio
6. # Gen_ratio can be defined/looped similarly to load_ratio
7.
8. # set power for each DER
9. DER_p = # ... depending on the desired scenario
10. # in [2] it is used to replace Synch. Gen. power
11. for i in range(0,len(DERs)):
12. DERs[i].outserv = 0
13. DERs[i].sgn = DER_p
14. DERs[i].pgini = DER_p
15. DERs[i].Pmax_ucPU = DER_p
16. DERs[i].Pmax = DER_p

22

17.
18. # Define the control strategy of DERs
19. # (ride-through Q-priority example, see Table A1 in [2])
20. for i in range(0,len(DSLs)):
21. DSLs[i].vl0 = 0.15 # Voltage break-point
22. DSLs[i].vl1 = 0.9 # Voltage break-point
23. DSLs[i].tvl0 = 0.1 # Timer for vl0
24. DSLs[i].tvl1 = 1.5 # Timer for vl1
25. DSLs[i].Vtripflag = 0 # Enable voltage trip
26. DSLs[i].Pqflag = 0 # P/Q priority
27.
28. # Example parameters to simulate FIDVR (see Section 4.3 in [2])
29. for i in range(0,len(DSLs_motors)):
30. DSLs_motors[i].Vstall = 0.55 #Voltage at which A/Cs stall
31. DSLs_motors[i].Tstall = 0.3 #Time needed to stall (<Vstall)
32. DSLs_motors[i].Frst = 0.2 #Ratio that recovers post-FIDVR

Figure 29: Extra code example for various parametrization of WECC

dynamic models and DER_A models used in [2, 4]

By utilizing approaches described so far, results such as the ones shown in Figure

30 are achieved. In a similar concept as Figure 28, the heatmaps provide the

following insights: (i) how different penetrations of DER affect STVS, per control

type; (ii) how different dynamic load compositions affect DER-penetrated systems’

STVS, per DER control type; (iii) how DER units interact with different dynamic

load models, per control type. One important conclusion that can be derived from

the heatmap is that DER ride-through control strategies (P- and especially Q-

priority) are much more favourable for preserving STVS, compared to

disconnection and momentary cessation. Such a conclusion is more emphasized as

DER penetration is increased. This can be concluded from the dominantly green

right parts of the lower heatmaps, compared to the upper ones. A more detailed

discussion of these results can be found in [2].

23

Figure 30: Heatmaps resulting from thousands of simulations for varying

DER penetration and control, as well as load composition [2]

For a broader discussion on these and further related findings, as well as more

details on the model, methodology, and scripting, curious readers are once again

referred to [2]. Furthermore, another example of a similar scripting approach is

presented in [4], where various short-term instabilities are modelled and quantified

in a more advanced manner.

1.5 Conclusions

Evaluating complex dynamic phenomena in modern power systems is an

exceedingly broad and challenging task. System stability, as one of the most

important aspects of power system analysis, is becoming increasingly complex to

model, evaluate, and ultimately maintain. The sheer number and complexity of

inverter-based resources and dynamic loads often make these studies

unmanageable. This is where programming and data science support from Python,

24

combined with advanced simulation software such as DIgSILENT PowerFactory,

may bring tremendous value going forward. The described approach in this chapter

highlights how short-term voltage stability concerns can be analysed efficiently

regardless of the high system complexity. Despite the approach being focused on

one specific aspect of power system analysis, the underlying concept of scripting

for rapid scenario variation is widely applicable. The linkage between

PowerFactory and Python creates enormous possibilities that are ultimately

necessary for accelerating the energy transition. Finally, considering the well-

established data science and machine learning libraries present in Python, the ability

to apply these advanced data techniques to power systems easier and within the

PowerFactory simulation environment presents a vast source of opportunities.

Acknowledgement

This work was financially supported by the Dutch Scientific Council NWO in

collaboration with TSO TenneT, DSOs Alliander, Stedin, Enduris, VSL and

General Electric in the framework of the Energy System Integration & Big Data

program under the project “Resilient Synchromeasurement-based Grid Protection

Platform, no. 647.003.004”.

References

[1] Gonzalez-Longatt FM, Rueda Torres JL. “PowerFactory Applications for

Power System Analysis”, Springer 2014

[2] A. Boričić, J. L. R. Torres, M. Popov, “Fundamental Study on the Influence of

Dynamic Load and Distributed Energy Resources on Power System Short-

Term Voltage Stability”, International Journal of Electrical Power & Energy

Systems, 2021.

[3] IEEE PES-TR77, “Stability definitions and characterization of dynamic

behavior in systems with high penetration of power electronic interfaced

technologies”, April 2020.

[4] A. Boričić, J. L. R. Torres, M. Popov, “Quantifying the Severity of Short-term

Instability Voltage Deviations”, International Conference on Smart Energy

Systems and Technologies (SEST), Sept. 2022.

25

[5] A. Boričić, J. L. R. Torres, M. Popov, "Impact of Modelling Assumptions on

the Voltage Stability Assessment of Active Distribution Grids," IEEE PES

Innovative Smart Grid Technologies (ISGT) Europe, 2020.

[6] T. V. Cutsem, M. Glavic, W. Rosehart, et al. “Test Systems for Voltage

Stability Studies”, IEEE Transactions on Power Systems, 2020.

[7] WECC Dynamic Composite Load Model (CMPLDW) Specifications, January

2015

[8] WECC Modelling Group “Composite Load Model for Dynamic Simulations –

Report 1.0

[9] Z. Ma, Z. Wang, Y. Wang, et al. “Mathematical Representation of WECC

Composite Load Model”, Journal of Modern Power Systems and Clean

Energy, September 2020

[10] Electrical Power Research Institute (EPRI), “The New Aggregated Distributed

Energy Resources (der a) Model for Transmission Planning Studies: 2019

Update,”

[11] NERC “Reliability Guideline Distributed Energy Resource Modelling”, Sept.

2017

[12] NERC “Reliability Guideline Modelling Distributed Energy Resources in

Dynamic Load Models”, Dec. 2016

[13] NERC “Reliability Guideline Parameterization of the DER_A Model”, Sept.

2019

[14] DIgSILENT PowerFactory Version 2020 SP2A “User Manual”.

[15] DIgSILENT PowerFactory Version 2020 SP2A “Python Reference”.

[16] Gonzalez-Longatt FM, Rueda Torres JL. “Advanced Smart Grid

Functionalities Based on PowerFactory”, Springer 2018

[17] A. Boričić, J. L. R. Torres, M. Popov, “Comprehensive Review of Short-Term

Voltage Stability Evaluation Methods in Modern Power Systems”, Energies,

2021.

