{
"cells": [
{
"cell_type": "code",
"execution_count": 306,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns \n",
"import numpy as np "
]
},
{
"cell_type": "code",
"execution_count": 307,
"metadata": {},
"outputs": [],
"source": [
"#Change the path if you are working from a different machine \n",
"\n",
"df = pd.read_csv(\"../datasets/SampledLitter_SchoneRivieren.csv\", index_col= 0)"
]
},
{
"cell_type": "code",
"execution_count": 308,
"metadata": {},
"outputs": [],
"source": [
"df = df.iloc[:,:11]"
]
},
{
"cell_type": "code",
"execution_count": 309,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Width [cm] | \n",
" Length [cm] | \n",
" Fragmentation level (0-5) | \n",
" Degradation level (1-5) | \n",
" Biofueling surface [%] | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 164.000000 | \n",
" 164.00000 | \n",
" 164.000000 | \n",
" 164.000000 | \n",
" 164.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 7.735976 | \n",
" 8.50061 | \n",
" 1.792683 | \n",
" 1.957317 | \n",
" 24.573171 | \n",
"
\n",
" \n",
" std | \n",
" 7.038613 | \n",
" 9.48355 | \n",
" 1.688923 | \n",
" 0.867622 | \n",
" 17.456365 | \n",
"
\n",
" \n",
" min | \n",
" 0.200000 | \n",
" 0.10000 | \n",
" 0.000000 | \n",
" 1.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 25% | \n",
" 3.000000 | \n",
" 2.00000 | \n",
" 0.000000 | \n",
" 1.000000 | \n",
" 10.000000 | \n",
"
\n",
" \n",
" 50% | \n",
" 6.000000 | \n",
" 5.00000 | \n",
" 1.000000 | \n",
" 2.000000 | \n",
" 20.000000 | \n",
"
\n",
" \n",
" 75% | \n",
" 9.000000 | \n",
" 11.00000 | \n",
" 3.000000 | \n",
" 3.000000 | \n",
" 40.000000 | \n",
"
\n",
" \n",
" max | \n",
" 38.000000 | \n",
" 47.00000 | \n",
" 5.000000 | \n",
" 5.000000 | \n",
" 100.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Width [cm] Length [cm] Fragmentation level (0-5) \\\n",
"count 164.000000 164.00000 164.000000 \n",
"mean 7.735976 8.50061 1.792683 \n",
"std 7.038613 9.48355 1.688923 \n",
"min 0.200000 0.10000 0.000000 \n",
"25% 3.000000 2.00000 0.000000 \n",
"50% 6.000000 5.00000 1.000000 \n",
"75% 9.000000 11.00000 3.000000 \n",
"max 38.000000 47.00000 5.000000 \n",
"\n",
" Degradation level (1-5) Biofueling surface [%] \n",
"count 164.000000 164.000000 \n",
"mean 1.957317 24.573171 \n",
"std 0.867622 17.456365 \n",
"min 1.000000 0.000000 \n",
"25% 1.000000 10.000000 \n",
"50% 2.000000 20.000000 \n",
"75% 3.000000 40.000000 \n",
"max 5.000000 100.000000 "
]
},
"execution_count": 309,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 310,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Index: 165 entries, 1 to 164\n",
"Data columns (total 11 columns):\n",
"Mass [gr] 164 non-null object\n",
"Width [cm] 164 non-null float64\n",
"Length [cm] 164 non-null float64\n",
"Item category (OSPAR ID) 162 non-null object\n",
"Polymer type 110 non-null object\n",
"Brand 37 non-null object\n",
"Language 31 non-null object\n",
"Year 3 non-null object\n",
"Fragmentation level (0-5) 164 non-null float64\n",
"Degradation level (1-5) 164 non-null float64\n",
"Biofueling surface [%] 164 non-null float64\n",
"dtypes: float64(5), object(6)\n",
"memory usage: 15.5+ KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 311,
"metadata": {},
"outputs": [],
"source": [
"df.columns = [\"mass\", \"width\", \"length\", \"OSPAR_ID\", \"polymer_type\", \"brand\", \"language\", \"year\", \"fragmentation\", \"degradation\", \"biofouling\"]"
]
},
{
"cell_type": "code",
"execution_count": 312,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mass | \n",
" width | \n",
" length | \n",
" OSPAR_ID | \n",
" polymer_type | \n",
" brand | \n",
" language | \n",
" year | \n",
" fragmentation | \n",
" degradation | \n",
" biofouling | \n",
"
\n",
" \n",
" Item_code | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 13 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" NaN | \n",
" Fernandes | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 11 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" NaN | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 11 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" NaN | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 11 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" NaN | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 5 | \n",
" 41 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" NaN | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 6 | \n",
" 13 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" NaN | \n",
" Cola | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 7 | \n",
" 16 | \n",
" 7.0 | \n",
" 11.0 | \n",
" 78 | \n",
" NaN | \n",
" Heineken | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 30.0 | \n",
"
\n",
" \n",
" 8 | \n",
" 13 | \n",
" 7.0 | \n",
" 11.0 | \n",
" 78 | \n",
" NaN | \n",
" Highway Cola Light | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 9 | \n",
" 252 | \n",
" 7.0 | \n",
" 11.0 | \n",
" 78 | \n",
" NaN | \n",
" Hertog Jan | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 10 | \n",
" 12 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" NaN | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 40.0 | \n",
"
\n",
" \n",
" 11 | \n",
" 46 | \n",
" 7.0 | \n",
" 11.0 | \n",
" 78 | \n",
" NaN | \n",
" Amstel | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 12 | \n",
" 18 | \n",
" 8.0 | \n",
" 16.0 | \n",
" 78 | \n",
" NaN | \n",
" NaN | \n",
" NL | \n",
" NaN | \n",
" 1.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 13 | \n",
" 90 | \n",
" 9.0 | \n",
" 9.0 | \n",
" 89 | \n",
" NaN | \n",
" Froyak | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 14 | \n",
" 39 | \n",
" 7.0 | \n",
" 20.0 | \n",
" 4.2 | \n",
" PET | \n",
" Lipton | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 15 | \n",
" 24 | \n",
" 6.0 | \n",
" 16.0 | \n",
" 4.2 | \n",
" PET | \n",
" AA Drink | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 16 | \n",
" 12 | \n",
" 7.0 | \n",
" 18.0 | \n",
" 4.2 | \n",
" PET | \n",
" Albert Heinz | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 17 | \n",
" 13 | \n",
" 9.0 | \n",
" 18.0 | \n",
" 4.2 | \n",
" PET | \n",
" NaN | \n",
" NL | \n",
" NaN | \n",
" 2.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 18 | \n",
" 27 | \n",
" 8.0 | \n",
" 21.0 | \n",
" 4.2 | \n",
" PET | \n",
" Cola Jumbo | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 30.0 | \n",
"
\n",
" \n",
" 19 | \n",
" 234 | \n",
" 7.0 | \n",
" 20.0 | \n",
" 91 | \n",
" NaN | \n",
" Heineken | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 30.0 | \n",
"
\n",
" \n",
" 20 | \n",
" 244 | \n",
" 7.0 | \n",
" 20.0 | \n",
" 91 | \n",
" NaN | \n",
" Amstel | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 21 | \n",
" 433 | \n",
" 9.0 | \n",
" 29.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 22 | \n",
" 19 | \n",
" 13.0 | \n",
" 7.0 | \n",
" 6 | \n",
" PET | \n",
" Welde Melk | \n",
" NL | \n",
" Apr-20 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 23 | \n",
" 21 | \n",
" 13.0 | \n",
" 7.0 | \n",
" 6 | \n",
" PET | \n",
" Healthy Hand | \n",
" NL | \n",
" Jun-20 | \n",
" 0.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 24 | \n",
" 3 | \n",
" 3.0 | \n",
" 1.0 | \n",
" 15 | \n",
" PO Hard | \n",
" NaN | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 25 | \n",
" 121 | \n",
" 6.0 | \n",
" 16.0 | \n",
" 91 | \n",
" NaN | \n",
" Corona | \n",
" NaN | \n",
" NaN | \n",
" 1.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 26 | \n",
" 19 | \n",
" 6.0 | \n",
" 6.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 27 | \n",
" 14 | \n",
" 6.0 | \n",
" 4.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 28 | \n",
" 6 | \n",
" 3.0 | \n",
" 7.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 29 | \n",
" 27 | \n",
" 9.0 | \n",
" 9.0 | \n",
" 91 | \n",
" NaN | \n",
" Corona | \n",
" NaN | \n",
" NaN | \n",
" 1.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 30 | \n",
" 6 | \n",
" 5.0 | \n",
" 3.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 135 | \n",
" 0.1 | \n",
" 4.0 | \n",
" 1.0 | \n",
" 46.2 | \n",
" PO soft | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 3.0 | \n",
" 40.0 | \n",
"
\n",
" \n",
" 136 | \n",
" 0.1 | \n",
" 3.0 | \n",
" 1.0 | \n",
" 46.2 | \n",
" PO sfot | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 137 | \n",
" 0.1 | \n",
" 1.0 | \n",
" 2.5 | \n",
" 19 | \n",
" Multilayer | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 3.0 | \n",
" 30.0 | \n",
"
\n",
" \n",
" 138 | \n",
" 0.1 | \n",
" 2.0 | \n",
" 1.0 | \n",
" 48 | \n",
" PO hard | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 139 | \n",
" 0.1 | \n",
" 2.0 | \n",
" 1.0 | \n",
" 48 | \n",
" PO hard | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 140 | \n",
" 0.1 | \n",
" 2.0 | \n",
" 0.5 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 141 | \n",
" 0.1 | \n",
" 1.0 | \n",
" 0.5 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 142 | \n",
" 0.1 | \n",
" 2.0 | \n",
" 2.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 143 | \n",
" 0.1 | \n",
" 3.0 | \n",
" 0.2 | \n",
" 48 | \n",
" PO hard | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1.0 | \n",
" 3.0 | \n",
" 30.0 | \n",
"
\n",
" \n",
" 144 | \n",
" 0.1 | \n",
" 5.0 | \n",
" 0.1 | \n",
" 48 | \n",
" PO hard | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 145 | \n",
" 0.1 | \n",
" 6.0 | \n",
" 0.1 | \n",
" 48 | \n",
" PO hard | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 146 | \n",
" 0.1 | \n",
" 2.0 | \n",
" 2.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 147 | \n",
" 0.1 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 148 | \n",
" 0.1 | \n",
" 1.0 | \n",
" 2.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 149 | \n",
" 0.1 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 48 | \n",
" EPS | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 150 | \n",
" 0.1 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 48 | \n",
" EPS | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 151 | \n",
" 0.1 | \n",
" 0.2 | \n",
" 0.2 | \n",
" 48 | \n",
" EPS | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 152 | \n",
" 0.1 | \n",
" 3.0 | \n",
" 1.0 | \n",
" 64 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
" 4.0 | \n",
" 70.0 | \n",
"
\n",
" \n",
" 153 | \n",
" 0.1 | \n",
" 0.5 | \n",
" 1.0 | \n",
" 19 | \n",
" Multilayer | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 154 | \n",
" 0.1 | \n",
" 7.0 | \n",
" 1.0 | \n",
" 59 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 155 | \n",
" 0.1 | \n",
" 0.2 | \n",
" 0.5 | \n",
" 19 | \n",
" Multilayer | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 3.0 | \n",
" 30.0 | \n",
"
\n",
" \n",
" 156 | \n",
" 0.1 | \n",
" 2.0 | \n",
" 2.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 3.0 | \n",
" 30.0 | \n",
"
\n",
" \n",
" 157 | \n",
" 0.1 | \n",
" 3.0 | \n",
" 1.0 | \n",
" 64 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 0.0 | \n",
" 5.0 | \n",
" 100.0 | \n",
"
\n",
" \n",
" 158 | \n",
" 0.1 | \n",
" 0.2 | \n",
" 0.2 | \n",
" 48 | \n",
" EPS | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 159 | \n",
" 0.1 | \n",
" 0.2 | \n",
" 0.2 | \n",
" 48 | \n",
" EPS | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 160 | \n",
" 0.1 | \n",
" 0.2 | \n",
" 0.2 | \n",
" 48 | \n",
" EPS | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 161 | \n",
" 0.1 | \n",
" 0.2 | \n",
" 0.2 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 162 | \n",
" 0.1 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 91 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 3.0 | \n",
" 40.0 | \n",
"
\n",
" \n",
" 163 | \n",
" 0.1 | \n",
" 1.0 | \n",
" 1.5 | \n",
" 48 | \n",
" Multilayer | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 164 | \n",
" 0.1 | \n",
" 3.0 | \n",
" 1.0 | \n",
" 64 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1.0 | \n",
" 4.0 | \n",
" 70.0 | \n",
"
\n",
" \n",
"
\n",
"
165 rows × 11 columns
\n",
"
"
],
"text/plain": [
" mass width length OSPAR_ID polymer_type brand \\\n",
"Item_code \n",
"1 13 6.0 14.0 78 NaN Fernandes \n",
"2 11 6.0 14.0 78 NaN Bullit \n",
"3 11 6.0 14.0 78 NaN Bullit \n",
"4 11 6.0 14.0 78 NaN Bullit \n",
"5 41 6.0 14.0 78 NaN Bullit \n",
"6 13 6.0 14.0 78 NaN Cola \n",
"7 16 7.0 11.0 78 NaN Heineken \n",
"8 13 7.0 11.0 78 NaN Highway Cola Light \n",
"9 252 7.0 11.0 78 NaN Hertog Jan \n",
"10 12 6.0 14.0 78 NaN Bullit \n",
"11 46 7.0 11.0 78 NaN Amstel \n",
"12 18 8.0 16.0 78 NaN NaN \n",
"13 90 9.0 9.0 89 NaN Froyak \n",
"14 39 7.0 20.0 4.2 PET Lipton \n",
"15 24 6.0 16.0 4.2 PET AA Drink \n",
"16 12 7.0 18.0 4.2 PET Albert Heinz \n",
"17 13 9.0 18.0 4.2 PET NaN \n",
"18 27 8.0 21.0 4.2 PET Cola Jumbo \n",
"19 234 7.0 20.0 91 NaN Heineken \n",
"20 244 7.0 20.0 91 NaN Amstel \n",
"21 433 9.0 29.0 91 NaN NaN \n",
"22 19 13.0 7.0 6 PET Welde Melk \n",
"23 21 13.0 7.0 6 PET Healthy Hand \n",
"24 3 3.0 1.0 15 PO Hard NaN \n",
"25 121 6.0 16.0 91 NaN Corona \n",
"26 19 6.0 6.0 91 NaN NaN \n",
"27 14 6.0 4.0 91 NaN NaN \n",
"28 6 3.0 7.0 91 NaN NaN \n",
"29 27 9.0 9.0 91 NaN Corona \n",
"30 6 5.0 3.0 91 NaN NaN \n",
"... ... ... ... ... ... ... \n",
"135 0.1 4.0 1.0 46.2 PO soft NaN \n",
"136 0.1 3.0 1.0 46.2 PO sfot NaN \n",
"137 0.1 1.0 2.5 19 Multilayer NaN \n",
"138 0.1 2.0 1.0 48 PO hard NaN \n",
"139 0.1 2.0 1.0 48 PO hard NaN \n",
"140 0.1 2.0 0.5 91 NaN NaN \n",
"141 0.1 1.0 0.5 91 NaN NaN \n",
"142 0.1 2.0 2.0 91 NaN NaN \n",
"143 0.1 3.0 0.2 48 PO hard NaN \n",
"144 0.1 5.0 0.1 48 PO hard NaN \n",
"145 0.1 6.0 0.1 48 PO hard NaN \n",
"146 0.1 2.0 2.0 91 NaN NaN \n",
"147 0.1 1.0 2.0 91 NaN NaN \n",
"148 0.1 1.0 2.0 91 NaN NaN \n",
"149 0.1 1.0 1.0 48 EPS NaN \n",
"150 0.1 1.0 1.0 48 EPS NaN \n",
"151 0.1 0.2 0.2 48 EPS NaN \n",
"152 0.1 3.0 1.0 64 NaN NaN \n",
"153 0.1 0.5 1.0 19 Multilayer NaN \n",
"154 0.1 7.0 1.0 59 NaN NaN \n",
"155 0.1 0.2 0.5 19 Multilayer NaN \n",
"156 0.1 2.0 2.0 91 NaN NaN \n",
"157 0.1 3.0 1.0 64 NaN NaN \n",
"158 0.1 0.2 0.2 48 EPS NaN \n",
"159 0.1 0.2 0.2 48 EPS NaN \n",
"160 0.1 0.2 0.2 48 EPS NaN \n",
"161 0.1 0.2 0.2 91 NaN NaN \n",
"162 0.1 1.0 1.0 91 NaN NaN \n",
"163 0.1 1.0 1.5 48 Multilayer NaN \n",
"164 0.1 3.0 1.0 64 NaN NaN \n",
"\n",
" language year fragmentation degradation biofouling \n",
"Item_code \n",
"1 NL NaN 0.0 1.0 10.0 \n",
"2 NL NaN 0.0 1.0 0.0 \n",
"3 NL NaN 0.0 2.0 10.0 \n",
"4 NL NaN 0.0 2.0 10.0 \n",
"5 NL NaN 0.0 3.0 50.0 \n",
"6 NL NaN 0.0 2.0 20.0 \n",
"7 NL NaN 0.0 2.0 30.0 \n",
"8 NL NaN 0.0 1.0 0.0 \n",
"9 NL NaN 0.0 1.0 10.0 \n",
"10 NL NaN 0.0 2.0 40.0 \n",
"11 NL NaN 0.0 2.0 20.0 \n",
"12 NL NaN 1.0 3.0 50.0 \n",
"13 NL NaN 0.0 1.0 10.0 \n",
"14 NL NaN 0.0 1.0 10.0 \n",
"15 NL NaN 0.0 1.0 0.0 \n",
"16 NL NaN 0.0 2.0 20.0 \n",
"17 NL NaN 2.0 1.0 10.0 \n",
"18 NL NaN 0.0 2.0 30.0 \n",
"19 NL NaN 0.0 2.0 30.0 \n",
"20 NL NaN 0.0 3.0 50.0 \n",
"21 NL NaN 0.0 1.0 10.0 \n",
"22 NL Apr-20 0.0 1.0 0.0 \n",
"23 NL Jun-20 0.0 1.0 10.0 \n",
"24 NL NaN 0.0 1.0 0.0 \n",
"25 NaN NaN 1.0 1.0 10.0 \n",
"26 NaN NaN 1.0 1.0 0.0 \n",
"27 NaN NaN 1.0 1.0 0.0 \n",
"28 NaN NaN 1.0 1.0 0.0 \n",
"29 NaN NaN 1.0 1.0 0.0 \n",
"30 NaN NaN 2.0 1.0 10.0 \n",
"... ... ... ... ... ... \n",
"135 NaN NaN 4.0 3.0 40.0 \n",
"136 NaN NaN 4.0 1.0 10.0 \n",
"137 NaN NaN 4.0 3.0 30.0 \n",
"138 NaN NaN 4.0 2.0 20.0 \n",
"139 NaN NaN 4.0 2.0 20.0 \n",
"140 NaN NaN 4.0 2.0 20.0 \n",
"141 NaN NaN 4.0 2.0 20.0 \n",
"142 NaN NaN 4.0 2.0 20.0 \n",
"143 NaN NaN 1.0 3.0 30.0 \n",
"144 NaN NaN 1.0 2.0 20.0 \n",
"145 NaN NaN 1.0 2.0 20.0 \n",
"146 NaN NaN 4.0 2.0 20.0 \n",
"147 NaN NaN 4.0 2.0 20.0 \n",
"148 NaN NaN 5.0 2.0 20.0 \n",
"149 NaN NaN 5.0 3.0 50.0 \n",
"150 NaN NaN 5.0 3.0 50.0 \n",
"151 NaN NaN 5.0 3.0 50.0 \n",
"152 NaN NaN 0.0 4.0 70.0 \n",
"153 NaN NaN 5.0 2.0 20.0 \n",
"154 NaN NaN 0.0 1.0 10.0 \n",
"155 NaN NaN 5.0 3.0 30.0 \n",
"156 NaN NaN 5.0 3.0 30.0 \n",
"157 NaN NaN 0.0 5.0 100.0 \n",
"158 NaN NaN 5.0 3.0 50.0 \n",
"159 NaN NaN 5.0 3.0 50.0 \n",
"160 NaN NaN 5.0 3.0 50.0 \n",
"161 NaN NaN 5.0 1.0 10.0 \n",
"162 NaN NaN 5.0 3.0 40.0 \n",
"163 NaN NaN 5.0 1.0 10.0 \n",
"164 NaN NaN 1.0 4.0 70.0 \n",
"\n",
"[165 rows x 11 columns]"
]
},
"execution_count": 312,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 313,
"metadata": {},
"outputs": [],
"source": [
"df.mass = df.mass.replace(to_replace=',', value='.')"
]
},
{
"cell_type": "code",
"execution_count": 314,
"metadata": {},
"outputs": [],
"source": [
"df.mass = df.mass.replace(to_replace='4,2', value=4.2)"
]
},
{
"cell_type": "code",
"execution_count": 315,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['13', '11', '41', '16', '252', '12', '46', '18', '90', '39', '24',\n",
" '27', '234', '244', '433', '19', '21', '3', '121', '14', '6', '9',\n",
" '38', '4', '158', '5', '7', '1.4', '1', '4.5', '5.7', '4.3', 4.2,\n",
" '0.8', '0.3', '2.3', '0.03', '0.02', '0.01', '0.39', '0.26',\n",
" '0.27', '0.13', '0.1', '0.15', '0.28', '0.21', '0.41', '1.06',\n",
" '2.9', '7.8', '3.8', '0.7', '2.5', '16.13', '3.89', '3.74', '1.57',\n",
" '0.17', '2.81', '0.5', '0.76', '0.11', '1.61', '0.33', '17.58',\n",
" '2.22', '0.53', '0.09', '0.05', '0.42', '0.55', '9.1', '2.4',\n",
" '1.6', '11.2', '26.5', '10.1', '0.23', '49.7', '3.3', '4.4', '6.1',\n",
" '0.43', '0.81', '0.24', '0.07', '0.4', '0.04', '0.06', '0.2',\n",
" '1.07', '9.4', '115.15', '48.3', '5.1', '1.8', nan], dtype=object)"
]
},
"execution_count": 315,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.mass.unique()"
]
},
{
"cell_type": "code",
"execution_count": 316,
"metadata": {},
"outputs": [],
"source": [
"df.mass = df.mass.astype(float)"
]
},
{
"cell_type": "code",
"execution_count": 317,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Index: 165 entries, 1 to 164\n",
"Data columns (total 11 columns):\n",
"mass 164 non-null float64\n",
"width 164 non-null float64\n",
"length 164 non-null float64\n",
"OSPAR_ID 162 non-null object\n",
"polymer_type 110 non-null object\n",
"brand 37 non-null object\n",
"language 31 non-null object\n",
"year 3 non-null object\n",
"fragmentation 164 non-null float64\n",
"degradation 164 non-null float64\n",
"biofouling 164 non-null float64\n",
"dtypes: float64(6), object(5)\n",
"memory usage: 15.5+ KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 318,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"67.07317073170732"
]
},
"execution_count": 318,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Calculate the proportion of plastic items over the total anthropogenic litter found (by count, not mass)\n",
"\n",
"110/164 * 100\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 319,
"metadata": {},
"outputs": [],
"source": [
"df.polymer_type = df.polymer_type.replace(np.nan, 'Not plastic', regex=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 320,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mass | \n",
" width | \n",
" length | \n",
" OSPAR_ID | \n",
" polymer_type | \n",
" brand | \n",
" language | \n",
" year | \n",
" fragmentation | \n",
" degradation | \n",
" biofouling | \n",
"
\n",
" \n",
" Item_code | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 13.0 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Fernandes | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 11.0 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 11.0 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 11.0 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 5 | \n",
" 41.0 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 3.0 | \n",
" 50.0 | \n",
"
\n",
" \n",
" 6 | \n",
" 13.0 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Cola | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 20.0 | \n",
"
\n",
" \n",
" 7 | \n",
" 16.0 | \n",
" 7.0 | \n",
" 11.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Heineken | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 30.0 | \n",
"
\n",
" \n",
" 8 | \n",
" 13.0 | \n",
" 7.0 | \n",
" 11.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Highway Cola Light | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 9 | \n",
" 252.0 | \n",
" 7.0 | \n",
" 11.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Hertog Jan | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 1.0 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 10 | \n",
" 12.0 | \n",
" 6.0 | \n",
" 14.0 | \n",
" 78 | \n",
" Not plastic | \n",
" Bullit | \n",
" NL | \n",
" NaN | \n",
" 0.0 | \n",
" 2.0 | \n",
" 40.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mass width length OSPAR_ID polymer_type brand \\\n",
"Item_code \n",
"1 13.0 6.0 14.0 78 Not plastic Fernandes \n",
"2 11.0 6.0 14.0 78 Not plastic Bullit \n",
"3 11.0 6.0 14.0 78 Not plastic Bullit \n",
"4 11.0 6.0 14.0 78 Not plastic Bullit \n",
"5 41.0 6.0 14.0 78 Not plastic Bullit \n",
"6 13.0 6.0 14.0 78 Not plastic Cola \n",
"7 16.0 7.0 11.0 78 Not plastic Heineken \n",
"8 13.0 7.0 11.0 78 Not plastic Highway Cola Light \n",
"9 252.0 7.0 11.0 78 Not plastic Hertog Jan \n",
"10 12.0 6.0 14.0 78 Not plastic Bullit \n",
"\n",
" language year fragmentation degradation biofouling \n",
"Item_code \n",
"1 NL NaN 0.0 1.0 10.0 \n",
"2 NL NaN 0.0 1.0 0.0 \n",
"3 NL NaN 0.0 2.0 10.0 \n",
"4 NL NaN 0.0 2.0 10.0 \n",
"5 NL NaN 0.0 3.0 50.0 \n",
"6 NL NaN 0.0 2.0 20.0 \n",
"7 NL NaN 0.0 2.0 30.0 \n",
"8 NL NaN 0.0 1.0 0.0 \n",
"9 NL NaN 0.0 1.0 10.0 \n",
"10 NL NaN 0.0 2.0 40.0 "
]
},
"execution_count": 320,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 321,
"metadata": {},
"outputs": [],
"source": [
"df_not_plastic = df.loc[df['polymer_type'] == 'Not plastic']"
]
},
{
"cell_type": "code",
"execution_count": 322,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mass | \n",
" width | \n",
" length | \n",
" fragmentation | \n",
" degradation | \n",
" biofouling | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 54.000000 | \n",
" 54.000000 | \n",
" 54.000000 | \n",
" 54.000000 | \n",
" 54.000000 | \n",
" 54.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 39.260370 | \n",
" 6.948148 | \n",
" 7.837037 | \n",
" 1.444444 | \n",
" 1.833333 | \n",
" 22.037037 | \n",
"
\n",
" \n",
" std | \n",
" 81.844006 | \n",
" 5.869806 | \n",
" 6.288513 | \n",
" 1.700906 | \n",
" 0.946692 | \n",
" 21.046187 | \n",
"
\n",
" \n",
" min | \n",
" 0.050000 | \n",
" 0.200000 | \n",
" 0.200000 | \n",
" 0.000000 | \n",
" 1.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 25% | \n",
" 0.127500 | \n",
" 3.250000 | \n",
" 2.250000 | \n",
" 0.000000 | \n",
" 1.000000 | \n",
" 10.000000 | \n",
"
\n",
" \n",
" 50% | \n",
" 9.600000 | \n",
" 6.000000 | \n",
" 7.000000 | \n",
" 1.000000 | \n",
" 2.000000 | \n",
" 20.000000 | \n",
"
\n",
" \n",
" 75% | \n",
" 24.625000 | \n",
" 7.000000 | \n",
" 11.000000 | \n",
" 2.000000 | \n",
" 2.000000 | \n",
" 30.000000 | \n",
"
\n",
" \n",
" max | \n",
" 433.000000 | \n",
" 28.000000 | \n",
" 29.000000 | \n",
" 5.000000 | \n",
" 5.000000 | \n",
" 100.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mass width length fragmentation degradation \\\n",
"count 54.000000 54.000000 54.000000 54.000000 54.000000 \n",
"mean 39.260370 6.948148 7.837037 1.444444 1.833333 \n",
"std 81.844006 5.869806 6.288513 1.700906 0.946692 \n",
"min 0.050000 0.200000 0.200000 0.000000 1.000000 \n",
"25% 0.127500 3.250000 2.250000 0.000000 1.000000 \n",
"50% 9.600000 6.000000 7.000000 1.000000 2.000000 \n",
"75% 24.625000 7.000000 11.000000 2.000000 2.000000 \n",
"max 433.000000 28.000000 29.000000 5.000000 5.000000 \n",
"\n",
" biofouling \n",
"count 54.000000 \n",
"mean 22.037037 \n",
"std 21.046187 \n",
"min 0.000000 \n",
"25% 10.000000 \n",
"50% 20.000000 \n",
"75% 30.000000 \n",
"max 100.000000 "
]
},
"execution_count": 322,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_not_plastic.describe()"
]
},
{
"cell_type": "code",
"execution_count": 323,
"metadata": {},
"outputs": [],
"source": [
"# 54 items are non-plastic, 110 plastic. \n",
"#Mean mass for non-plastic items is 39 gr. Biofouling estimated at 22% on avergae, 1.44 of fragmentation \n",
"# Average width and lenght: 6 cm. "
]
},
{
"cell_type": "code",
"execution_count": 324,
"metadata": {},
"outputs": [],
"source": [
"df_plastic = df.loc[df['polymer_type'] != 'Not plastic']"
]
},
{
"cell_type": "code",
"execution_count": 325,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mass | \n",
" width | \n",
" length | \n",
" fragmentation | \n",
" degradation | \n",
" biofouling | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 110.000000 | \n",
" 110.000000 | \n",
" 110.000000 | \n",
" 110.000000 | \n",
" 110.000000 | \n",
" 110.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 3.164273 | \n",
" 8.122727 | \n",
" 8.826364 | \n",
" 1.963636 | \n",
" 2.018182 | \n",
" 25.818182 | \n",
"
\n",
" \n",
" std | \n",
" 7.530676 | \n",
" 7.541502 | \n",
" 10.721022 | \n",
" 1.664124 | \n",
" 0.823751 | \n",
" 15.348061 | \n",
"
\n",
" \n",
" min | \n",
" 0.010000 | \n",
" 0.200000 | \n",
" 0.100000 | \n",
" 0.000000 | \n",
" 1.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 25% | \n",
" 0.100000 | \n",
" 3.000000 | \n",
" 2.000000 | \n",
" 0.000000 | \n",
" 1.000000 | \n",
" 10.000000 | \n",
"
\n",
" \n",
" 50% | \n",
" 0.315000 | \n",
" 6.000000 | \n",
" 4.500000 | \n",
" 2.000000 | \n",
" 2.000000 | \n",
" 20.000000 | \n",
"
\n",
" \n",
" 75% | \n",
" 2.375000 | \n",
" 10.750000 | \n",
" 10.000000 | \n",
" 3.000000 | \n",
" 3.000000 | \n",
" 40.000000 | \n",
"
\n",
" \n",
" max | \n",
" 49.700000 | \n",
" 38.000000 | \n",
" 47.000000 | \n",
" 5.000000 | \n",
" 3.000000 | \n",
" 60.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mass width length fragmentation degradation \\\n",
"count 110.000000 110.000000 110.000000 110.000000 110.000000 \n",
"mean 3.164273 8.122727 8.826364 1.963636 2.018182 \n",
"std 7.530676 7.541502 10.721022 1.664124 0.823751 \n",
"min 0.010000 0.200000 0.100000 0.000000 1.000000 \n",
"25% 0.100000 3.000000 2.000000 0.000000 1.000000 \n",
"50% 0.315000 6.000000 4.500000 2.000000 2.000000 \n",
"75% 2.375000 10.750000 10.000000 3.000000 3.000000 \n",
"max 49.700000 38.000000 47.000000 5.000000 3.000000 \n",
"\n",
" biofouling \n",
"count 110.000000 \n",
"mean 25.818182 \n",
"std 15.348061 \n",
"min 0.000000 \n",
"25% 10.000000 \n",
"50% 20.000000 \n",
"75% 40.000000 \n",
"max 60.000000 "
]
},
"execution_count": 325,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_plastic.describe()"
]
},
{
"cell_type": "code",
"execution_count": 326,
"metadata": {},
"outputs": [],
"source": [
"#Mean mass for non-plastic items is 3.16 gr. Biofouling estimated at 26% on avergae, 1.96 of fragmentation. \n",
"#Average length and width: 8 cm"
]
},
{
"cell_type": "code",
"execution_count": 327,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\pandas\\core\\generic.py:5096: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" self[name] = value\n"
]
}
],
"source": [
"df_plastic.polymer_type = df_plastic.polymer_type.replace('Mulitlayer', 'Multilayer', regex=True)\n",
"df_plastic.polymer_type = df_plastic.polymer_type.replace('Multilyaer', 'Multilayer', regex=True)\n",
"df_plastic.polymer_type = df_plastic.polymer_type.replace('Multilayer', 'Multilayer', regex=True)\n",
"df_plastic.polymer_type = df_plastic.polymer_type.replace('PO Hard', 'PO hard', regex=True)\n",
"df_plastic.polymer_type = df_plastic.polymer_type.replace('PO sfot', 'PO soft', regex=True)\n",
"df_plastic.polymer_type = df_plastic.polymer_type.replace(' ', '', regex=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 328,
"metadata": {},
"outputs": [],
"source": [
"polymer_type_df = df_plastic.groupby(\"polymer_type\").polymer_type.count() "
]
},
{
"cell_type": "code",
"execution_count": 329,
"metadata": {},
"outputs": [],
"source": [
"polymer_type_df = polymer_type_df.sort_values(ascending = True)"
]
},
{
"cell_type": "code",
"execution_count": 330,
"metadata": {},
"outputs": [],
"source": [
"polymer_type_df = polymer_type_df.to_frame()"
]
},
{
"cell_type": "code",
"execution_count": 331,
"metadata": {},
"outputs": [],
"source": [
"polymer_type_df['Percentage'] = (polymer_type_df.polymer_type / 110) * 100 "
]
},
{
"cell_type": "code",
"execution_count": 332,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['PS', 'Other', 'PET', 'POhard', 'EPS', 'Multilayer', 'POsoft'], dtype='object', name='polymer_type')"
]
},
"execution_count": 332,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"polymer_type_prop.index"
]
},
{
"cell_type": "code",
"execution_count": 333,
"metadata": {},
"outputs": [],
"source": [
"polymer_type = polymer_type_df.iloc[:,1:]"
]
},
{
"cell_type": "code",
"execution_count": 334,
"metadata": {},
"outputs": [],
"source": [
"polymer_type.reset_index(inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 335,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Polymer composition')"
]
},
"execution_count": 335,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEOCAYAAAA3wDgwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu81FW9//HXWwQBQbqoxQ4TTfMC2kY32EnNu6bZMVPzeDlq1gHN8lLaz1MpYJFWWHjJC2ZqecPUxGPq8RLkJY+xUUSFvKMihtfkroCf3x/ru2EYZu/93XvP7JkN7+fjMQ9m1vf2+c5s5jNrfdd3LUUEZmZmtWydagdgZmbWGicrMzOreU5WZmZW85yszMys5jlZmZlZzXOyMjOzmudkZWZmNc/JyszMap6TlZmZ1bx1qx3AmmLDDTeMgQMHVjsMM7MuZerUqW9FxEatredkVSYDBw6ksbGx2mGYmXUpkl7Os56bAc3MrOY5WZmZWc1zsjIzs5rnZGVmZjXPycrMzGqek5WZmdU8d10vkzlz5jB69Ohqh2Fm1qlGjhzZKcdxzcrMzGqek5WZmdU8JyszM6t5NZ+sJC2XNE3SU5L+KKl3Vj5A0kRJz0l6QdIFknqU4XiHSZopaZKkekkHdPwszMysI2o+WQGLI6I+IgYDHwAnSBJwK3BbRGwJfBboA4wpw/G+CXw7IvYA6gEnKzOzKusKyarQg8AWwJ7Akoi4CiAilgOnAcc31byaSOov6YGC2tmuWfkRkp7Myn6elZ0N7AJcJunXwDnA4dm2h3faWZqZ2Sq6TNd1SesC+wN3A4OAqYXLI2KepFdIyWx6waIjgf+NiDGSugG9JdUBPwd2BN4F7pH01Yg4R9KewOkR0SjpCaAhIr5T8RM0M7NmdYWaVS9J04BG4BXgSkBAlFi3VPkU4BuSRgHbRcR8YCgwOSLejIhlwHXAF9samKThkholNS5atKitm5uZWU5doWa1OCLqCwskPQ0cUlS2AbAJ8EJheUQ8IOmLwJeBP0j6JTCvHIFFxHhgPEBdXV2p5GlmZmXQFWpWpdxPas47BiBr3jsfuDoiVqniSNoUeCMiriDVynYAHgV2k7Rhtu0RwF9LHGc+0Ldyp2FmZnl0yWQVEQEcDBwm6TngWWAJ8MMSq+8OTJP0OKk2dkFEvA78NzAJeAJ4LCImlth2ErCtO1iYmVVXzTcDRkSfZspfBb6SY/trgGtKlF8PXF+ifPeC5++Qrm+ZmVkVdcmalZmZrV2crMzMrOY5WZmZWc1T6qtgHdXQ0BCNjY3VDsPMrEuRNDUiGlpbzzUrMzOreU5WZmZW85yszMys5jlZmZlZzXOyMjOzmudkZWZmNc/JyszMap6TlZmZ1TwnKzMzq3lOVmZmVvOcrMzMrOY5WZmZWc1zsjIzs5qXa6ZgSR8DxgB7ARtTlOQiYoPyh2ZmZpbkndb+SmAIMB6YA3hekSJz5sxh9OjR1Q7DrCaNHDmy2iFYF5c3We0F7BMRj1YyGDMzs1LyXrN6A1hQyUDMzMyakzdZ/Qg4R1KfSgZjZmZWSt5k9WNgX+ANSTMlTS985NmBpJD0h4LX60p6U9IdObZdkP07UNKRBeUNki7Mnh8n6eKc52NmZl1I3mtWN5fhWAuBwZJ6RcRiYB/gtTbuYyBwJHA9QEQ0Ao1liK1VktaNiGWdcSwzM1tVrmQVEeXq5nYX8GVS8jsCuAHYFUDSKGBBRIzNXj8FHBgRswq2Pw/YRtI04BrgceD0iDiw8CCSvkKqDfYA3gaOAt4EngG+EBFvSloHeBb4PCDgMuDT2S5OjYiHs5jqSEnyLVKiNDOzTtamm4Il7SnpO5JOkrR7O453I/AfknoC2wNt7V14JvBgRNRHxK9bWO8h4PMRMSQ75g8i4kPgWlLiAtgbeCIi3gIuAH4dEUOBQ4DfFuxrR+CgiHCiMjOrkrw3BX8K+BPpi3tOVlwnqRE4OCLmNLtxgYiYLmkgqVZ1Z5ujzW8AMEFSf1Lt6qWs/HfARGAccDxwVVa+N7CtpKbtN5DUN3t+e9ZsuRpJw4HhAP369Sv3OZiZWSZvzepCYDmwRURsEhGbAFtmZRe28Zi3A2NJTYCFlhXF07ON+y10EXBxRGwHjGjaV0S8CsyVtCewE6lZkuy4/5bV2Ooj4lMRMT9btrC5g0TE+IhoiIiG3r17dyBcMzNrSd5ktQ9wUkQ01VCIiBeBk7NlbfE74JyIeLKofBawA4CkHYDNSmw7H+hborxYP1Z23ji2aNlvSc2BN0XE8qzsHuA7TStIqs9xDDMz6yQdHcj2w7ZuEBGzI+KCEotuAT6WdZ44kdT5odh0YJmkJySd1sJhRgF/lPQgqWNEoduBPqxsAoSUdBuyrvgzgBPynY2ZmXUGRbQ+zJ+kPwEbAUdkTWlI+jRwHfBmRHytolGWkaQGUmeKXcu537q6uhgxYkQ5d2m2xvDYgNYcSVMjoqG19fLWrE4GegMvSnpZ0izghazs5HZH2ckknUmqwf13tWMxM7P88t5n9Sqwg6R9gK1J9yXNiIj7KhlcuUXEeaR7tczMrAvJO4IFABFxL3BvhWIxMzMrqdlrVpK+B1wSEUuy582KiF9VIriupKGhIRobO2XkJzOzNUbea1Yt1ay+SxrSaEn2vDkBrPXJyszMKqfZZBURm5V6bmZm1tly9QaUdIyk9UqU95B0TPnDMjMzWylv1/WrSKNCFOvLqjfXmpmZlV3eZCXStalinwbeK184ZmZmq2ux67qkJ0lJKoC/SiqcfLAbsCmVHT3dzMys1fusmmYIHgz8GVhQsOwD0uCzt5Q/LDMzs5VaTFZNMwRnwytNiIglnRGUmZlZobzDLV1T6UDMzMya02yykjQP2Dwi3pI0n9IdLACIiA0qEZyZmRm0PoLF/ILnrc8lYmZmVgEtjWBxTcHzqzslGjMzsxLyjmCxkaSNCl5vJ+mnko6oXGhmZmZJ3puCbwK+AiBpQ+AB4GDgMknfr1BsZmZmQP75rLYH/i97fijwfEQMlXQQ8Evg/EoE15XMmTOH0aNHVzsMs7LydPRWK/LWrHqx8obgvYHbs+ePAZuUOygzM7NCeZPVc8DXJG0C7Avck5V/AvhXJQIzMzNrkjdZjQZ+Thpe6f8i4tGsfD/g8QrEZWZmtkLeESxulfRpoA54omDRfdTo2ICSlgNPFhTdGBHnFa0zEJgJPAP0IHUc+Xa2eBywJ+n+siXA1yPipcpGbWZmpeTtYEFEzAXmSuojKSJiYUENqxYtjoj6HOu9EBH1ktYF/gJ8FViPlJi3j4gPJQ0AFlYwVjMza0HeZkAknSTpFdL8VfMkvSzp261t11VExDLgb8AWQH/g9Yj4MFs2OyLerWZ8ZmZrs7w3Bf8QOA+4ktTBYl/SDMHnSTqzcuF1SC9J0woeh7e0sqTewF6kpsObgK9k250vaUhnBGxmZqXlbQY8ARgeETcUlN0v6TngZ6REVmvyNgN+RtI00rWpiRFxF4CkrUjXrPYknethEXF/4YaShgPDAfr161fW4M3MbKW8yWpjYEqJ8r+Tuq93CZJ2Ai7PXp4NTCe7ZlW8bkS8D9wF3CVpLula1v1F64wHxgPU1dV5oF8zswrJe83qWeDIEuVHknrSdQkR8WhE1GeP25tbT9IOkuqy5+uQRvB4ubPiNDOzVeWtWY0CbpL0ReBhUpPZLsBuwGGVCa3DemXNe03ujoi819c2Bq6QtF72+u/AxWWNzszMcmvLfVY7AacBBwICZgDDIqImbwqOiG451pkFDC5RfjdwdwXCMjOzdmjLfVZTgaMrGIuZmVlJuZOVpJ6ka1TbZkUzgBsiYnElAjMzM2uS9z6rHYAXSVOBDMseY4EXs2VmZmYVo4jWe1xLaiQlq29ExMKsbH3gd8BnIqKholF2AQ0NDdHY2FjtMMzMuhRJU/PkkLzNgIOAY5oSFUBELJR0DuBvaDMzq6i891n9gzSwa7H+pHuwzMzMKiZvzerHwIVZTappevvPZ+VnSvpY04oR8U55QzQzs7Vd3mT1P9m/15NuCIZ0rxXAxILXAbR6f5OZmVlb5E1We1Q0CjMzsxbkHcHir5UOxMzMrDltuSm4B2looo0p6pgREXeWOS4zM7MVciUrSfsAfyAlqmK+TmVmZhWVt+v6b4A7gM2A3kCvgkfvyoRmZmaW5G0G7A/8LCI8p5OZmXW6vDWrO4AvVDIQMzOz5uStWZ0AXCdpR+ApYGnhwoj4fbkDMzMza5I3We0H7AUcACxi5Y3BZM+drMzMrGLyNgOOJU3r3jci+kRE34LHBhWMz8zMLHfN6iPAZYWjrtuq5syZw+jRo6sdhhkAI0eOrHYIZmWVt2Z1C7B3JQMxMzNrTt6a1YvAGElfBKazegeLX5U7MDMzsyZ5k9XxwHxS9/XiLuwBOFmZmVnF5B3IdrNKB9JE0nLgSVJsM4FjI2KRpAGkkTS2JTVf3gGcEREfFG2/O3B6RBxYxpgWRESfcu3PzMzaJu81qxUk9ZG0fiWCySyOiPqIGAx8AJwgScCtwG0RsSXwWaAPMKbcB5eUe3BfMzPrHLmTlaSTJL0CvAfMk/SypG9XLjQAHgS2APYElkTEVQARsRw4DTheUqmxCftIulnSPyRdlyU7JJ0taYqkpySNLyifLOlnkv4KnCJpM0mPZOv+pMLnaGZmrciVrCT9EDgPuBLYN3tcBZwn6cxKBJbVcPYnNQkOAqYWLo+IecArpGRWbAhwKqnJcHNg56z84ogYmtXaegGFTYUfiYjdIuJ84ALg0ogYCvyzfGdlZmbtkbdmdQIwPCJGR8T92WMUcGL2KKdekqYBjaRkdCUgVh01o0lz5X+PiNkR8SEwDRiYle8h6VFJT5Jqa4MKtplQ8Hxn4Ibs+R+aC1TScEmNkhoXLVrU+pmZmVm75L0+szEwpUT534FPlC8cILtmVVgg6WngkKKyDYBNgBdK7OP9gufLgXUl9QQuARoi4lVJo4CeBesV3/BcKgmuukLEeGA8QF1dXavrm5lZ++StWT0LHFmi/EjgmfKF06z7gd6SjgGQ1A04H7g6IvJWaZoS01uS+gCHtrDuw8B/ZM+Pake8ZmZWRnlrVqOAm7Kbgh8m1Tp2AXYDDqtMaCtFREg6GLhE0lmkJHsn8MM27ONfkq4gXQObRemaYpNTgOslnUIavcPMzKpIEflar7LpQU4DtiFdK5oBnB8Rj1cuvK6jrq4uRowYUe0wzACPDWhdh6SpEdHQ2nq57ymKiKnA0R2KyszMrB3ydl0/TNJBJcoPktTStR8zM7MOy9vBYhSwpET5wmyZmZlZxeRtBtyc0r3+ns+WrfXq6up8ncDMrELy1qzeBbYsUf5Z0mjsZmZmFZM3WU0Efi3ps00FkrYiTQ1yWyUCMzMza5I3Wf2ANIDtDEmvSnoVeBqYB5xRqeDMzMwg/3xW84GdJe0D1JPus3oMuD/y3qhlZmbWTm2auyki7gXurVAsZmZmJbV58kUzM7PO5mRlZmY1z8nKzMxqXqvJStK6kg6Q9PHOCMjMzKxYq8kqIpYBtwJ9Kx+OmZnZ6vI2Az4BbFHJQMzMzJrTloFsz5f0VUmbSPpY4aOC8ZmZmeW+z+rP2b+3kmYJbqLsdbdyBmVmZlYob7Lao6JRmJmZtSD3tPbWMk9rXx6eZsVs7ZJ3Wvvc91lJ2k7SxZLuktQ/K/uqpCEdCdTMzKw1eae13xeYAnwK2BPolS36DOCfwmZmVlF5a1Y/Ab4XEQcDHxSUTwaGlTsoMzOzQnk7WAwC7ixR/g7QJbquS1oOPEk655nAsRGxqKC8yY3ATsBmQB9gI+ClbNm3I+JvnRe1mZlB/mT1LqkJcFZR+Q7A7HIGVEGLI6IeQNJ1wAmkmY5XlBeTtDtwekQc2GlRmpnZavI2A14P/FLSANJ9VetK2g0YC/y+UsFV0IN4RA4zsy4jb7L6Makp7GVS09gM4C/AQ8CYyoRWGZLWBfZnZdNfL0nTCh6HVzE8MzMrIe+09kuBoySdDQwhJbnHI+K5SgZXZr0kTcuePwhcmT1vthmwNZKGA8MB+vXr1/EIzcyspLZOa/8C8EKFYqm0diel5kTEeGA8pJuCy7lvMzNbKXeyknQwadiljSlqPoyIr5c5LjMzsxXy3hR8PjAB2C4rWl706MqKr1mdV+2AzMxsVXlrVscCh0XExEoGU0kR0aeZ8mZHjI+IyaQbn83MrIry9gZcBPyjkoGYmZk1J2+yOg/4Qdbt28zMrFPlTT5XAAcCr0l6FlhauDAi9ix3YGZmZk3yJqvLgF2Bu4G5rDpbsAF1dXWei8nMrELyJquvA1+LiHsrGYyZmVkpea9ZvQW8VslAzMzMmpM3WY0EzpFUsvu3mZlZJeVtBjwDGAjMlfQKq3ew2L7McZmZma2QN1ndgjtVmJlZleQddX1UheMwMzNrVt6xAW+TdKCkvNe4zMzMyiZv8llIGsh2tqSfSdqygjGZmZmtIleyioijgP7AT4C9gWckPSDpGEm9KhmgmZlZ7ma9iJgXEZdGxDDSVCFTgcuBf0q6XNI2lQrSzMzWbm2+BiWpDjiINFbgMuBmYBNguqTTyxuemZlZ/g4W3SUdKulO4GXgq8AvgP4R8c2IOAA4Cvhx5UI1M7O1Vd77rF4HBFwPnBkR00uscy/wbrkCMzMza5I3WZ0G/DEiljS3QkS8C2xWlqjMzMwKKMIDU5RDXV1djBgxotphtJmnNTGzapI0NSIaWluv2ZqVpNvzHiwi/j3vumZmZm3VUjPg250WhZmZWQuaTVYR8Y3ODMTMzKw5eTtYACCpJ7AFaQT2F1rqcGFmZlYubbnP6pekrulPAE8C70r6haTulQwwR2wDJE2U9JykFyRdIKmHpHpJBxSsN8o3LZuZdU15R7D4OXA0cALwWWBL4ETgP4FzKxNa6yQJuBW4LSK2zGLrA4wB6oEDWti8rcfqVq59mZlZ2+RtBjwSOD4i7iwoe0HSm8BvgWrVWPYElkTEVQARsVzSaaRRNpaS8tkurEyo20qaDHwaGBcRF5JWOho4GegBPAp8O9vXAuBXwH7A94GHOu3MzMxshbw1q37ACyXKXwA+Ur5w2mwQaUDdFSJiHjAL+CkwISLqI2JCtnhrUuIZBozMmje3AQ4Hdo6IemA5aegogPWBpyJip4hYLVFJGi6pUVLjokWLKnB6ZmYG+ZPVE6SaR7FTgGnlC6fNROrskbf8zxHxfkS8BbwBfALYC9gRmCJpWvZ682z95cAtzR08IsZHRENENPTu3bsDp2FmZi3J2wz4A+BOSfsAj5ASwb8BdcD+FYotj6eBQwoLJG1AGgV+eYn13y94vpx0/gKuiYj/LrH+kogotR8zM+tEeSdffADYCvgjqQPDBtnzrUo1j3Wi+4Heko6BFZ0gzgeuBuYCfXPu41BJG2f7+JikTSsTrpmZtUfu+6wi4jXgRxWMpc0iIiQdDFwi6SxS8r0T+CHpetOZWdNesz0WI2KGpB8D90hah9Qx4yRSJw0zM6sBLSYrSb2BX5Lmr+oO3AecnF3zqQkR8SrwlRKL3geGtrDd4ILnE4AJJdbpU44YzcysY1prBhwNHAf8GbgR2Ae4tMIxmZmZraK1ZsCvAd+MiBsBJF0LPCypmzsemJlZZ2lxPitJHwCbZdermsoWA5/Nmt8s09DQEI2NjdUOw8ysS8k7n1VrzYDdgA+KypbRxgFwzczMOqK1pCPgWkmF9yf1BK6QtGLIBk++aGZmldRasrqmRNm1lQjEzMysOS0mK0/AaGZmtSDv2IBmZmZV42RlZmY1z8nKzMxqnpOVmZnVPCcrMzOreU5WZmZW85yszMys5jlZmZlZzXOyMjOzmudkZWZmNc/JyszMap6n+iiTOXPmMHr06BbXGTlyZCdFY2atWbp0KbNnz2bJkiXVDmWt0LNnTwYMGED37t3btb2TlZmtlWbPnk3fvn0ZOHAgkqodzhotInj77beZPXs2m222Wbv24WZAM1srLVmyhI9//ONOVJ1AEh//+Mc7VIt1sjKztZYTVefp6Hu91icrScslTZP0lKQ/Suqdlf9I0tOSpmfLd6p2rGa2ZunWrRv19fUMHjyYww47jEWLFrW+UQWMGzeuasfOy9esYHFE1ANIug44QdIjwIHADhHxvqQNgR7VDNLMKqu1DlJtladDVa9evZg2bRoARx11FJdddhnf+973cu1/+fLldOvWrUMxNhk3bhxHH300vXv3Lsv+KmGtr1kVeRDYAugPvBUR7wNExFsRMaeqkZnZGm3XXXfl+eefB+Daa69l2LBh1NfXM2LECJYvXw5Anz59OPvss9lpp5145JFHmDJlCl/4whf43Oc+x7Bhw5g/fz7Lly/njDPOYOjQoWy//fZcfvnlAEyePJndd9+dQw89lK233pqjjjqKiODCCy9kzpw57LHHHuyxxx4AnHjiiTQ0NDBo0KBVku6dd97J1ltvzS677MLJJ5/MgQceCMDChQs5/vjjGTp0KEOGDGHixIllf3+crDKS1gX2B54E7gE2kfSspEsk7dbMNsMlNUpqrPUqtJnVrmXLlnHXXXex3XbbMXPmTCZMmMDDDz/MtGnT6NatG9dddx2QksLgwYN59NFHGTZsGIcffjgXXHABTzzxBPfddx+9evXiyiuvpF+/fkyZMoUpU6ZwxRVX8NJLLwHw+OOPM27cOGbMmMGLL77Iww8/zMknn0xdXR2TJk1i0qRJAIwZM4bGxkamT5/OX//6V6ZPn86SJUsYMWIEd911Fw899BBvvvnmivjHjBnDnnvuyZQpU5g0aRJnnHEGCxcuLOt75GZA6CVpWvb8QeDKiPhA0o7ArsAewARJZ0bE1YUbRsR4YDxAXV1ddGLMZrYGWLx4MfX19UCqWX3zm99k/PjxTJ06laFDh65YZ+ONNwbSNa5DDjkEgGeeeYb+/fuvWG+DDTYA4J577mH69OncfPPNALz33ns899xz9OjRg2HDhjFgwAAA6uvrmTVrFrvssstqcd10002MHz+eZcuW8frrrzNjxgw+/PBDNt988xVdz4844gjGjx+/4pi33347Y8eOBVJPy1deeYVtttmmbO+Vk1XBNatCEbEcmAxMlvQkcCxwdeeGZmZrssJrVk0igmOPPZZzzz13tfV79uy54jpVRJTsYRcRXHTRRey3336rlE+ePJn11ltvxetu3bqxbNmy1bZ/6aWXGDt2LFOmTOGjH/0oxx13HEuWLCGi+d/jEcEtt9zCVltt1fIJd4CbAUuQtJWkLQuK6oGXqxWPma099tprL26++WbeeOMNAN555x1efnn1r5+tt96aOXPmMGXKFADmz5/PsmXL2G+//bj00ktZunQpAM8++2yrTXJ9+/Zl/vz5AMybN4/111+ffv36MXfuXO66664Vx3vxxReZNWsWABMmTFix/X777cdFF120IqE9/vjjHXgHSnPNqrQ+wEWSPgIsA54Hhlc3JDNbG2y77bb89Kc/Zd999+XDDz+ke/fu/OY3v2HTTTddZb0ePXowYcIEvvvd77J48WJ69erFfffdx7e+9S1mzZrFDjvsQESw0UYbcdttt7V4zOHDh7P//vvTv39/Jk2axJAhQxg0aBCbb745O++8M5BqgZdccglf+tKX2HDDDRk2bNiK7c866yxOPfVUtt9+eyKCgQMHcscdd5T1fVFLVTvLr66uLkaMGNHiOh4b0Kx2zJw5s6zXVNYGCxYsoE+fPkQEJ510EltuuSWnnXZa7u1LveeSpkZEQ2vbuhnQzMxyueKKK6ivr2fQoEG89957tPYDvZzcDGhmZrmcdtppbapJlZOTVZnU1dW5mc/MrELcDGhmay1fs+88HX2vnazMbK3Us2dP3n77bSesTtA0n1XPnj3bvQ83A5rZWmnAgAHMnj17lWGDrHKaZgpuLycrM1srde/evd2z1lrnczOgmZnVPCcrMzOreU5WZmZW8zzcUplImg88U+04ymBD4K1qB1EGPo/a4vOoPbVyLptGxEatreQOFuXzTJ7xrWqdpEafR+3wedSWNeU8oOudi5sBzcys5jlZmZlZzXOyKp/x1Q6gTHwetcXnUVvWlPOALnYu7mBhZmY1zzUrMzOreU5WHSTpS5KekfS8pDOrHU9HSJol6UlJ0yQ1VjuevCT9TtIbkp4qKPuYpHslPZf9+9FqxphHM+cxStJr2WcyTdIB1YwxD0mbSJokaaakpyWdkpV3qc+khfPoUp+JpJ6S/i7piew8Rmflm0l6NPs8JkjqUe1YW+JmwA6Q1A14FtgHmA1MAY6IiBlVDaydJM0CGiKiFu69yE3SF4EFwO8jYnBW9gvgnYg4L/sR8dGI+H/VjLM1zZzHKGBBRIytZmxtIak/0D8iHpPUF5gKfBU4ji70mbRwHl+nC30mkgSsHxELJHUHHgJOAb4H3BoRN0q6DHgiIi6tZqwtcc2qY4YBz0fEixHxAXAjcFCVY1rrRMQDwDtFxQcB12TPryF9ydS0Zs6jy4mI1yPisez5fGAm8Cm62GfSwnl0KZEsyF52zx4B7AncnJXX/OfhZNUxnwJeLXg9my74x1wggHskTZU0vNrBdNAnIuJ1SF86wMZVjqcjviNpetZMWNNNZ8UkDQSGAI/ShT+TovOALvaZSOomaRrwBnAv8ALwr4hYlq1S899dTlYdoxJlXblddeeI2AHYHzgpa5ay6roU+AxQD7wOnF/dcPKT1Ae4BTg1IuZVO572KnEeXe4ziYjlEVEPDCC1CG1TarXOjaptnKw6ZjawScHrAcCcKsXSYRExJ/v3DeBPpD/qrmpuds2h6drDG1WOp10iYm72RfMhcAVd5DPJro3cAlwXEbdmxV3uMyl1Hl31MwGIiH8Bk4HPAx+R1DTkXs1/dzlZdcwUYMusV00P4D+A26scU7tIWj+7iIyk9YF9gada3qqm3Q4cmz0/FphYxVjarenLPXMwXeAzyS7oXwnMjIhfFSzqUp9Jc+fR1T4TSRtJ+kj2vBewN+n62yTg0Gy12v883BuwY7Juq+OAbsDvImJMlUNqF0mbk2pTkAY4vr6rnIukG4DdSaNIzwVGArcBNwGfBl4BDouImu680Mx57E5qbgpgFjCi6bpPrZK0C/Ag8CQj2q5bAAAJEElEQVTwYVb8Q9L1ni7zmbRwHkfQhT4TSduTOlB0I1VQboqIc7L/8zcCHwMeB46OiPerF2nLnKzMzKzmuRnQzMxqnpOVmZnVPCcrMzOreU5WZmZW85yszMys5jlZmVWBpK0lPSJpSTaAcNVJOk7SglbWmSXp9M6KaU0jabKkyB6fL+O+GsoVY61ysjIkXV3wR79U0ouSxmY3B9e87D/txdWOo41+CiwCtgaGlloh+1zuaOuO27tdTkOBSwqOFZIObWH9tUIb/wavAvqTRnFH0nqS/iBpnqRnJe1dtO+TJV1fYj9fowuNntFR67a+iq0l7gP+kzQi867Ab4H1gRPbszNJPbKR6K20LYCJETGr2oG0RUS8We0Y1gCLIuKfBa+HAzsC/0Yal/N6SZ+IiJC0CWkqj9WSUkS8I2mDTom4FkSEH2v5A7gauKOo7Arg9YLX2wJ/BuaTxnS7Afhk8T6A/0caM/GNrLwH8DPgZeB94EXg5Hbs9xTgNeBd0i/T3gXLo+gxkHS3/pXAS8Bi4DngB8A6BfteF/h1ts93s+eXApML1lG23QvZfp4k3enf0vu5DnAWaUT+97NtDipYXhzvqBL7GFVivd2zZduRflwsJk0pcjXQL8d25wHPZNvNAn4B9Cw45nGkeZpaOrdZwOkFzwuPM6tgva+Qag5Lss9gDNCjaD9nZ7HPz96rw4GPkEZVWJB9Zvu2Eo+A72frvk/62zu3YHmz71ULf/ujgKc6+jfYTLyTgYuLyi4Bzsue98q23yh7fTtwXAvnPzBbv6Ha3yOVfrgZ0JqzmFTLahoL7QHSGGjDSGOL9QFul1T4N7QbsD3wJWCvrOwa4BjSr8NtgG8C/2rjfncFBmfLDyeNx3ZKtuwU4BFWNq30J33xrUP6Yvl6dtwfkYbK+UbBfk8nfUF/izSw5zrAkUXvw0+zmE8iJdZzgcslfbmF9+4U4AxS4t6ONIzVrZLqs+X9SUnj/Ox5qUn8xpKGJrqv4Lz+Jqk3cDfpy3xY9l58AfhdS9tlyxYCx2fvx7dJY1n+qIXzaE1T8+V/ZccZCiBpP+A64GJgUHbMQ0k/WgqdCvwd2CGL+RrgeuBO0nBGDwDXSurZQgw/I/0wODc71mFk0/bkeK/aoj1/g3k9AeySjdu3H2kk97ckfZ00aeLV7Yh3zVPtbOlH9R8U/bok/cd+C5iQvT4HuL9om4+SftENK9jHm8B6Betsma3zpWaOm3e/rwLrFqxzBXBfwevJFP1abeZ45xVt9zpwZsFrAf8gq1mRmkEXA7sW7WcccGcLx3kNOLuobDJwbcHrpyhRo2rpc8nK/gt4D+hbULZ79p5t0dx2zez/BNLkoU2vj6MNNavsdQCHFq3zAHBWUdlXSUlDBfu5oWB5n2xfFxaUDaSFWkO2zRLghGaWt+u9onTNqlx/g6utR/pR+BtSDXQKsAuphvkiqbl4JGlG8geArYu2bfE9WpMevmZlTb6U9QRbl/SfZyLw3WzZjsAXm+kp9hnSr2NI/8ELB8IcQhoAdFIzx8y73xmxcpI4SFMZ7NTK+SDpBFKtaVNS80p3UnMkkvoBnyw4BhERkqawctqXbYGewN2SCgfR7E76si11zA2AOuDhokUPAQe0FnMO2wDTI81c2+RvpPd5W+D55jbMOkKcSvoC7ENqKu1WhpiK7QgMk1Q4Zf06pM/gk6QfCQDTmxZGmnJ9EanJtMnc7N/mJmncFlgPuL+Z5e1+r0po199gHhGxlFRzX0HSb4HxpA44h5Pe0yOAP9BMh5w1nZOVNXmAdKF3KTAn+w/UZB3SdaVSXZbnFjxfWLSs1OSUhfLud2nRsqCVnqySDifVgE4nfUHNI30hHFxiXy3FB+n6yytFy4pjKlZqv+UYNVot7KfZ/WfdpG8ERgOnkZpi/53STZAdtU52nD+WWFbYQaPU57q06HXT/kpp7e8rz3v1YYn9dC+xfpv/BttL0m6k5HQC6brinyNivqTrSE3QfYsS8FrBycqaLIqI5n5pPka69vNyURJrzWOk/9B7kK4dlGu/xT5g9RrCLsCjEbGiO7GkzzQ9j4j3JP2T1OQ5KVsu0q/Wpp5aM0gX7TeNiL/kCSQi5kmakx2/cJtdsv21RanzmgEcX/SF9QXS+zyzhe12Bl6LiJ80FUjatI3xlLK0xLEeIzVXtaXm0h5Nn89epA4WpZa39l69Sbo+Vqj4dR6l3vM2k7QeqZPPsRGxLLt225QUe2T/VqI2XPPcwcLy+A3QD5ggaSdJm0vaW9L4pgkbS4mI50gXzn8r6ZBskspdJf1nR/ZbwixSs9NASRtm/8GfBXaQtL+kLSWdReoAUugC4AeSDpa0FSs7PEQW/3xSzWOspOMlbSGpXtIJkoa3EM8vgdMlHSHps5LOIV2gb+v057OAwZK2ys6rO6njwkLg95K2k/RF4HLg1oLkUGq7Z4FPSToqe59PJDUrddQsYC9Jn5T00azsHOBISedIGqx0A/Shkn5RhuOtkH0+FwDnSvqGpM9IGpadG+R7r/4CDCn4fH9ASuxtNYvV/wbb4yzgfyNiSvb6IeCQrHPOGcDTkWb7Xes4WVmrIk13vzOpyeRu4GlSonk/e7TkGFIPrwtJnReuJiWoju630FjSL9sZpF/KnyZ9Kd2UHXsK6UJ0cbIYS7oGcBXwf1nZn0gX7ZucRbrgfnoW373AIaSL4c25kJSwfkHqSHEwcEhETGvDOUG6iD8TaMzOa+eIWETqMbYB6XrbRFJPtONb2e5/spjGka4V7UPqOt5R3yfVnF8lTeBHRPwv8OWs/O/Z40xWb0oth/8Gfk76nGaSpqAfkMXR6nuVxTqa1LV+KunvZMVNz21Q6m+wTSQNJl2f+nFB8a3ZYxKp2fbYdsS2RvDki2YFJD0GPBwR3211ZbM2kjSZ1BHpO2Xa30DSD6ehEdFYjn3WKtesbK0laVNJw7PmskGSLgA+R7rfx6xShktaIKlDvfok3UWq7a8VXLOytVY2lM0NpBt31yE14ZwVEfdUNTBbY0n6FKkLP8CrRbd6VG1fXYGTlZmZ1Tw3A5qZWc1zsjIzs5rnZGVmZjXPycrMzGqek5WZmdU8JyszM6t5/x9YN9bD2s0JbQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"my_yticks = ['PS', 'Other', 'PET', 'PO hard', 'E-PS', 'Multilayer', 'PO soft'] \n",
"\n",
"polymer_type.plot(kind='barh', color = 'grey')\n",
"\n",
"plt.yticks(polymer_type.index, my_yticks)\n",
"plt.legend()\n",
"plt.xlabel('Percentage of total item count [%]', fontsize = 14)\n",
"plt.ylabel('Polymer composition', fontsize = 14)\n"
]
},
{
"cell_type": "code",
"execution_count": 336,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mass | \n",
" width | \n",
" length | \n",
" fragmentation | \n",
" degradation | \n",
" biofouling | \n",
"
\n",
" \n",
" \n",
" \n",
" mass | \n",
" 1.000000 | \n",
" 0.196368 | \n",
" 0.363639 | \n",
" -0.374618 | \n",
" -0.107737 | \n",
" -0.114121 | \n",
"
\n",
" \n",
" width | \n",
" 0.196368 | \n",
" 1.000000 | \n",
" 0.699370 | \n",
" -0.360400 | \n",
" 0.077908 | \n",
" 0.206671 | \n",
"
\n",
" \n",
" length | \n",
" 0.363639 | \n",
" 0.699370 | \n",
" 1.000000 | \n",
" -0.406285 | \n",
" 0.080662 | \n",
" 0.201283 | \n",
"
\n",
" \n",
" fragmentation | \n",
" -0.374618 | \n",
" -0.360400 | \n",
" -0.406285 | \n",
" 1.000000 | \n",
" 0.368577 | \n",
" 0.346006 | \n",
"
\n",
" \n",
" degradation | \n",
" -0.107737 | \n",
" 0.077908 | \n",
" 0.080662 | \n",
" 0.368577 | \n",
" 1.000000 | \n",
" 0.927638 | \n",
"
\n",
" \n",
" biofouling | \n",
" -0.114121 | \n",
" 0.206671 | \n",
" 0.201283 | \n",
" 0.346006 | \n",
" 0.927638 | \n",
" 1.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mass width length fragmentation degradation \\\n",
"mass 1.000000 0.196368 0.363639 -0.374618 -0.107737 \n",
"width 0.196368 1.000000 0.699370 -0.360400 0.077908 \n",
"length 0.363639 0.699370 1.000000 -0.406285 0.080662 \n",
"fragmentation -0.374618 -0.360400 -0.406285 1.000000 0.368577 \n",
"degradation -0.107737 0.077908 0.080662 0.368577 1.000000 \n",
"biofouling -0.114121 0.206671 0.201283 0.346006 0.927638 \n",
"\n",
" biofouling \n",
"mass -0.114121 \n",
"width 0.206671 \n",
"length 0.201283 \n",
"fragmentation 0.346006 \n",
"degradation 0.927638 \n",
"biofouling 1.000000 "
]
},
"execution_count": 336,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_plastic.corr()"
]
},
{
"cell_type": "code",
"execution_count": 340,
"metadata": {},
"outputs": [],
"source": [
"OSPAR_type = df_plastic.groupby(\"OSPAR_ID\").OSPAR_ID.count().to_frame()"
]
},
{
"cell_type": "code",
"execution_count": 341,
"metadata": {},
"outputs": [],
"source": [
"OSPAR_type.columns = ['Count']"
]
},
{
"cell_type": "code",
"execution_count": 342,
"metadata": {},
"outputs": [],
"source": [
"OSPAR_type.reset_index(inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 343,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" OSPAR_ID | \n",
" Count | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 100 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 105 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" 117.1 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 117.2 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 15 | \n",
" 4 | \n",
"
\n",
" \n",
" 5 | \n",
" 16 | \n",
" 1 | \n",
"
\n",
" \n",
" 6 | \n",
" 19 | \n",
" 19 | \n",
"
\n",
" \n",
" 7 | \n",
" 19.1 | \n",
" 1 | \n",
"
\n",
" \n",
" 8 | \n",
" 2 | \n",
" 3 | \n",
"
\n",
" \n",
" 9 | \n",
" 20 | \n",
" 1 | \n",
"
\n",
" \n",
" 10 | \n",
" 21 | \n",
" 1 | \n",
"
\n",
" \n",
" 11 | \n",
" 25 | \n",
" 3 | \n",
"
\n",
" \n",
" 12 | \n",
" 3 | \n",
" 9 | \n",
"
\n",
" \n",
" 13 | \n",
" 32 | \n",
" 1 | \n",
"
\n",
" \n",
" 14 | \n",
" 38.1 | \n",
" 1 | \n",
"
\n",
" \n",
" 15 | \n",
" 4.1 | \n",
" 1 | \n",
"
\n",
" \n",
" 16 | \n",
" 4.2 | \n",
" 5 | \n",
"
\n",
" \n",
" 17 | \n",
" 4.3 | \n",
" 1 | \n",
"
\n",
" \n",
" 18 | \n",
" 43.1 | \n",
" 1 | \n",
"
\n",
" \n",
" 19 | \n",
" 46.1 | \n",
" 3 | \n",
"
\n",
" \n",
" 20 | \n",
" 46.2 | \n",
" 10 | \n",
"
\n",
" \n",
" 21 | \n",
" 462 | \n",
" 12 | \n",
"
\n",
" \n",
" 22 | \n",
" 48 | \n",
" 23 | \n",
"
\n",
" \n",
" 23 | \n",
" 6 | \n",
" 4 | \n",
"
\n",
" \n",
" 24 | \n",
" 99 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" OSPAR_ID Count\n",
"0 100 1\n",
"1 105 1\n",
"2 117.1 1\n",
"3 117.2 1\n",
"4 15 4\n",
"5 16 1\n",
"6 19 19\n",
"7 19.1 1\n",
"8 2 3\n",
"9 20 1\n",
"10 21 1\n",
"11 25 3\n",
"12 3 9\n",
"13 32 1\n",
"14 38.1 1\n",
"15 4.1 1\n",
"16 4.2 5\n",
"17 4.3 1\n",
"18 43.1 1\n",
"19 46.1 3\n",
"20 46.2 10\n",
"21 462 12\n",
"22 48 23\n",
"23 6 4\n",
"24 99 1"
]
},
"execution_count": 343,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"OSPAR_type"
]
},
{
"cell_type": "code",
"execution_count": 344,
"metadata": {},
"outputs": [],
"source": [
"OSPAR_type = OSPAR_type.sort_values(by = 'Count', ascending = False)"
]
},
{
"cell_type": "code",
"execution_count": 345,
"metadata": {},
"outputs": [],
"source": [
"OSPAR_type =OSPAR_type.replace('48', 'Other items')\n",
"OSPAR_type =OSPAR_type.replace('19', 'Crisp/sweet packets and lolly sticks')\n",
"OSPAR_type =OSPAR_type.replace('462', 'Indefinable pieces of styrofoam [2.5 - 50 cm]')\n",
"OSPAR_type =OSPAR_type.replace('46.2', 'Plastic foils or pieces of soft plastic [2.5 - 50 cm]')\n",
"OSPAR_type =OSPAR_type.replace('3', 'Small plastic bags')\n",
"OSPAR_type =OSPAR_type.replace('4.2', 'Plastic bottles < 0.5 L')\n",
"OSPAR_type =OSPAR_type.replace('6', 'Food containers incl. fast food containers')\n",
"OSPAR_type =OSPAR_type.replace('15', 'Caps/lids')\n",
"OSPAR_type =OSPAR_type.replace('46.1', 'Undefined plastic pieces 2.5 - 50 cm (hard plastic)')\n",
"OSPAR_type =OSPAR_type.replace('25', 'Household gloves (soft plastic)')\n",
"OSPAR_type =OSPAR_type.replace('2', 'Bags')\n"
]
},
{
"cell_type": "code",
"execution_count": 346,
"metadata": {},
"outputs": [],
"source": [
"OSPAR_top = OSPAR_type.iloc[:10,]"
]
},
{
"cell_type": "code",
"execution_count": 347,
"metadata": {},
"outputs": [],
"source": [
"OSPAR_top.columns = ['OSPAR','Count']"
]
},
{
"cell_type": "code",
"execution_count": 348,
"metadata": {},
"outputs": [],
"source": [
"OSPAR_top.set_index('OSPAR', inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 349,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Count | \n",
"
\n",
" \n",
" OSPAR | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" Other items | \n",
" 23 | \n",
"
\n",
" \n",
" Crisp/sweet packets and lolly sticks | \n",
" 19 | \n",
"
\n",
" \n",
" Indefinable pieces of styrofoam [2.5 - 50 cm] | \n",
" 12 | \n",
"
\n",
" \n",
" Plastic foils or pieces of soft plastic [2.5 - 50 cm] | \n",
" 10 | \n",
"
\n",
" \n",
" Small plastic bags | \n",
" 9 | \n",
"
\n",
" \n",
" Plastic bottles < 0.5 L | \n",
" 5 | \n",
"
\n",
" \n",
" Food containers incl. fast food containers | \n",
" 4 | \n",
"
\n",
" \n",
" Caps/lids | \n",
" 4 | \n",
"
\n",
" \n",
" Bags | \n",
" 3 | \n",
"
\n",
" \n",
" Undefined plastic pieces 2.5 - 50 cm (hard plastic) | \n",
" 3 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Count\n",
"OSPAR \n",
"Other items 23\n",
"Crisp/sweet packets and lolly sticks 19\n",
"Indefinable pieces of styrofoam [2.5 - 50 cm] 12\n",
"Plastic foils or pieces of soft plastic [2.5 - ... 10\n",
"Small plastic bags 9\n",
"Plastic bottles < 0.5 L 5\n",
"Food containers incl. fast food containers 4\n",
"Caps/lids 4\n",
"Bags 3\n",
"Undefined plastic pieces 2.5 - 50 cm (hard plas... 3"
]
},
"execution_count": 349,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"OSPAR_top"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}