
Theme Code Explanation Examples Partial-fit Examples
Bugs in
practice

Identifying
bugs

Methods used by
interviewees to
identify bugs in
code

• Read the code
• Trace debugging
• Print statements / Printf debugging
• Staring at the code
• Questioning invariants
• Already knowing what the problem is
• Debugging tooling for profiling
• Hints by GHC
• HLS integration in VS Code […] red wiggles
• Skim the area where the bug should come from
• Write a test to replicate the problem
• Hard coding some values
• Dissect the area
• Print the data and properties of data.
• If tests have failed […] then you know a place to

start looking at
• Follow up of guess
• Look at the types involved
• Figure out what parts of the program are involved
• From that context (e.g. from the bug report), kind of

figure out if it has to do with this part of the
program

• Replicate the bug

• It feels like there is a hurdle to really go into the

weeds and use the complete debugging tooling

because that requires some set up and that's kind of

time intensive. And even if you use it […] you need

to actually be quite experienced to always find… to

quickly find the problem in there.

• I'm pattern matching here, and I expect this list to be
non empty, and it's empty... That's a good point to
start

• I know, at this point, something is going wrong. But
is it going wrong because of this function is doing
something wrong? Or is it going wrong, because I
receive wrong data?

• I will just aggressive try to remove all laziness from
the code and then see, if the system behaves
correctly. Usually, if it doesn't, that means that I have
maybe some infinite list that I am generating, but
then the behaviour from the system changes from
"my program is slowly leaking memory" to "my
program is not running at all", in this case, because
some infinite computations. I think that actually
points you to somewhere where you need to be
more careful.

Bugs in
practice

Fixing bugs Methods used by
the interviewees
to fix bugs in code

• Throw blank patterns at some places and hope it
sticks

• Investigate and try around
• Rewrite the logic
• Understanding the program state
• Understanding the bug:

o Git blame
o Reading old commit messages
o Understanding intention of code

• Chesterton’s fence – Question why something
[piece of code] is there

• Correct the incorrect types
• Fully understand the problem and what the

correct value would be in that location
• Trial and error

• What you thought would be the right value isn't the
right value and because the end result isn't correct

• The way I coded at that location to introduce that
bug might have cause me to introduce bugs at other
locations because I programmed there in the same
kind of way

• So try not to be defensive and do something on this
small part of the code

• If it is an easy bug, I would probably fix it and then
write the test instead

• Moving checks to the type checker
• Parse all SQL queries that are embedded in the

Haskell code […] so that I know it’s valid SQL syntax

and prevent that kind of bug (Typos in Haskell

automated tools that generates SQL queries).
• Try to fix the real problem, but because in Haskell we

have the strong type system, sometimes I also look
at ways in which this can be avoided or directly
reported by the compiler.

• Very aggressively adding bans or somehow forcing
the evaluation of things and hope that this will fix
the problem.

• Trace statements or Print statements to see what the
values involved are

• Write a test
• Strict Haskell, and there's strict versions of

containers that you can use
• Profile the application and look at the memory

allocation
Bugs in
practice

Complexity of
bugs

How hard different
types of bugs are
to fix as
considered by the
interviewees

• Timing / Optimization are probably the bane
• Wrong understanding of the problem […] this is

kind of a nice bug to have
• (Configuration type) it’s quite an annoying one […]

it’s so hard to debug because you cannot just do
printf debugging or introspect the state of the
pipeline

• External systems […] sometimes it's actually hard to
replicate why they have failed

• These (bugs related to laziness in Haskell) are also
quite problematic and usually are very hard to debug
in Haskell because, usually, if you try to inspect
what's going on, you're actually changing their
laziness behaviour.

• Most tricky (bugs) are the ones which are memory
leaks related to laziness.

• That's what makes it tricky in Haskell, because you
can't write in the type system, or in the test, you
can't say this function shouldn't take more than this
much memory, so because we can't model that in
the language itself, then you have to kind of use
these external tools, which makes those kinds of

• It's (Memory leaks) basically the downside, the trade
off that you have from using Haskell because it's
really hard to reason about.

• The really annoying bugs are the ones where you're
like “Why does it not work? It should work! I don't
know what's going on!”

• It's good to check all of them because you never
know where else the same kind of problems could
have caused bigger issues in the code base.

• So if we're in the lucky case in which we have some
tests that has failed... this is maybe one case
scenario, right? Because then, you know, a place to
start looking at.

• (Program segfaulting), was a very tricky bug, not just
because the solution was weird, but also because
other people have been working on it before and we
weren't really understanding

bugs (Performance) trickier than maybe they should
be.

Bugs in
practice

Most time
spent on bugs

How much time
the interviewees
spent on fixing
certain types of
bugs

• Requirement and environment bugs […]
sometimes it takes a lot

• In terms of spent time per bug, performance and
space leak issues are probably the most intensive

• Understanding the requirements is 80% of the
work

• I spend most time on […] wrong understanding of
the problem

• I’ve spent a lot of time […] (when) you interact with
external systems

• I’ve spent a lot of time […] on everything (bugs)
which has to do with the fact that Haskell is lazy

• I always think of them (bugs related to laziness in
Haskell) as a real sink of time.

• That's the bugs (Performance) I've spent most time
on in Haskell

• If it takes two minutes, then it's not a complicated
bug. But if it's taking a half an hour, or an hour, my
evaluation of the complexity is building up.

Bugs in
practice

Frequency of
bugs

How often certain
types of bugs
appear

• Most bugs I fix are some kind of logic bugs
• Most common bugs are wrong assumptions

about environment
• Space leaks […] the king of Haskell bugs
• Name shadowing […] not very often
• API bugs does not happen that often, because it’s

hopefully well documented
• Rare kind of bug , or not very rare […] type error
• Most common is where I have some wrong

understanding of the problem
• Often have it in CI pipelines where something is

misconfigured
• Most of the bugs […] involve some kind of external

interaction
• Most common thing I encounter is just off by one

errors or I think actually for me, it's more
performance bugs that I have to fix

• Bugs which have reached my testing or
production […] that’s not very common

• A lot bugs are prevented by type checker
• IO runtime errors which can just bubble up
• Haskell code definition of the (SQL) query […] it’s

much easier to make just a typo in and will only
figure out at runtime when a particular query is
executed.

• Usually bugs don't come all at the same time. They
come bit by bit

• I see often that you get wrong results, not because
of that specific function, but because you actually
got some wrong data coming in.

• often I find that the kind of functions we write in
Haskell are simple enough that if the data is
consistent, they will give you the right results.

• They (bugs related to laziness in Haskell) are not
happening as often

• Because most of the other things (other than
Performance bugs) are taken care of by the type
system and the tests, but what you really need to,

kind of manually do is make sure that the evaluation
is correct.

Bugs in
practice

Bug types Types of bugs
mentioned by the
interviewees or
used by them in
practice

• Performance
• Memory / Space leaks
• (real) Logic bugs
• Type errors [not caught by compiler] (Runtime

bugs)
• Parsing bugs [bugs happening when parsing data

to get it in the application]
• Regression
• Name shadowing (accidentally used a variable

from higher up and not the current state)
• Requirement and environment bugs [wrong

assumptions about the environment the code is
running in]

• Expectations of the behaviour of an API
• Type Tetris [someone picked a function which

seemed to fit the complicated types they needed,
but it does something completely wrong)

• IO runtime errors
• Compile time errors
• Wrong understanding of the problem
• Problems on the interface
• Security relevant
• External interaction
• Validation issues
• Tricky bug, where it takes you a long time to kind of

figure out why it's being caused
• Off by one errors

• Wrong variable
• Wrong type
• Forgot one edge case
• Not working how you expect it
• Wrong thing you implemented
• Missing stuff
• String conversion that didn’t work
• Something out of scope of the Haskell type

system
• Interactions with the other programs other file

formats other interfaces and that's where it's the
most easy to make mistakes

• Haskell type safety erodes at the edges

Bugs in
practice

Bug
classifications

Different ways of
classifying a bug
explained by the
interviewees

• Implicit classification
• By importance [not a problematic bug, or very

rare, then we decide we can’t prioritize this]
• Small / Serious bugs
• No classification system
• Safety critical
• Label which area of the program it concerns […]

Backend […] Cloud functions feature […] server
[…] GUI […] sometimes we combine security and
performance with like GUI […] Infrastructure (new

• Treat bugs mostly with the same diligence and
priority

• It's very flexible just combining tags of kind of bug
and which area.

• We have priority, and we will say, this is a
refactoring, or this is a feature,

servers, more CPU) […] Dashboard […] SQL […]
User page

• Easy vs tricky bugs (based on time spent)
Bugs in
practice

Pushing buggy
code

Different
behaviours of
what interviewees
do with buggy
code before
pushing their code
to a remote
branch

• Yeah […] that's just a business trade off
• We don’t have time to work on this, so we just leave

it (the bug in the code)
• Leave a TODO
• Stash it
• Don’t push buggy code
• Remove / Comment out the buggy part of the

code
• Build something simpler that is correct as far as

the features it supports are
• Push it onto a work in progress branch.
• Wouldn’t merge it to main
• Push and say that I know this doesn't work

• Wait until a customer complains
• I use GitHub also as a way to just sync the code

between machines

Bugs in
practice

Wild bugs Examples of bugs
the interviewees
encountered and
potential fixes

• There were some design decisions involved and I
simply didn't realise that there is a situation where
the user could actually even click on something
which would display an invoice for another year. So,
in that case, we decided to rewrite the logic for how
to discover which invoices to cache and that's what
we do now

• The strong structure and the types prevent a lot of

bugs, but when you get the data in, you need to

somehow process this. Often that's parsing. Maybe

it’s with an existing library, if it's JSON or you write

your own parser and the stuff you get in that's

inherently noisy and you can just have a bug in your

parser. And those are the situations where like

validation of incoming data fails.

• Sometimes you want to parse a document, but you
use it as a maybe document and then the parser
tries to parse a maybe document, but for that
instance does not actually fit what comes out of the
database

• I used show somewhere in the code to convert
something to a string […] later, I changed the data
type, but because show converts any data type to a

string, it still converted to a string and the new string
was partially correct for some of the cases, but it
didn't work for the other cases and it took me
forever to realize that at that place like the show
now created another string which was only correct
for some use cases, which made a really weird error
you get, because most of the time it works and it
suddenly doesn't. […] By now if I use the show
function, I always use […] “show space at text” for
example or like “at user” […] so you can annotate
which type the show function should receive. Then if
you later change the type of the variable you get an
error because the “at user” wouldn't work anymore
if the new type is now “at person”

• I learned there's two tools which basically do almost
the same thing, but a little differently and I was using
the wrong one. And then the pipeline crashed at
that moment with a very inconclusive error message

• If we had a list and we expected it to be non empty,
maybe I can change the type from the regular list to
some type of non empty list if I think that this is an
invariant, which happens throughout the whole
program, and then this will help me locate the places
where I'm actually working with this value

• In [project] there's an unsafe perform IO for
performance reasons. And what was happening is
that sometimes the program would segfault […].
Then I was tracking down the segfault, and then I
was kind of trying to print out values. And what
happened was that once I printed out a value, it
would not segfault anymore. And then I think the
solution to that bug was just fmap-ing ID or like... so
kind of not doing anything but I think that causes the
evaluation of the value, so it would not segfault
anymore.

Taxonomies Frequency of

bugs
How often do the
interviewees
consider each of
the types to
appear

• Algorithm / Method can of course happen
• Assignment / Initialisation seems unlikely in

Haskell
• Checking is something that can go very wrong in

Haskell

• Some categories, they're largely reduced in Haskell
• Assignment/Initialization and that seems a little bit

more low level

• Data seems a little less likely
• Internal Interface can happen
• Configuration is annoying and the ones you

encounter often
• Network I try to avoid as far as possible
• Database-related also common issue
• GUI related issues also happen often, but they are

mostly not critical
• Rarely had Performance issues with Haskell
• [Permission / Deprecation] that's something you can

plan for […] so not really important
• Every other type of issue might become a Security

issue
• (Program Anomaly) is always something you try to

avoid as much as possible […] this happens quite
often

• Most of them are Logic bugs
• Many of the bugs although not the ones that take

the most time to fix are Program Anomaly issues
• Another important source of bugs for me is what it

appears to be network issues
• Configuration issues... I don't think I've dealt with

too much
• Database related issues […] I haven't found that

often that people will have problems writing SQL […]
And databases, in my experience are not things you
fail for a connection […] it's something that you
control

• GUI related... I wouldn't often do UI application in
Haskell

• Performance issues, as I mentioned, I think they are
very... they are rare in Haskell

• I've never had to deal with a security issue
• May not apply too much to Haskell is scanning of

Data
• Type conversions is very much non existent in

Haskell, you always go through some kind of
functions.

• There is not often that you can define it (modelling
of data) wrong

• If buttons don't work anymore, buttons are hidden,
that is more severe

• Anything stylistic, I don't even count as a bug
• But all this laziness, or this potential to do infinite

computation in Haskell, really means that you could
have for performance issues which are difficult to
track

• You can see all of these in practice, but I think it
really depends on where you are in the stack.

• It (non functional defects type) feels like too broad

of a category to me

• Which of these appears most […] definitely
Performance bugs

• I usually work in the back end, so GUI issues are not
really my forte or permission issues. That's more like
something that the front end would have to deal
with

• I've had database related issues for sure
• Configuration issues... it's very much part of the

initial setup, but we don't have it so much during
development.

• Optimisation appears most
• Checking appears a lot less because the type system

really forces you to handle everything that can
happen

• But I think once the types are in place, the types
make sure that you're handling data better so the
defect (Data) appears, but at a different stage of the
project.

Taxonomies Suggestions Suggestions given
to improve the
taxonomies, e.g.
adding types.

• Misunderstanding requirements
• Split that one up into more categories, because GUI

related doesn't tell you anything, just that it's
happening in the GUI. But is it stylistic? Or is it
impacting the user flow?

• (Program Anomaly) needs to be split up […] because
what kind of logic error is very important

• When I think of the (Database-related) problems, I
think of them, and if you have a problem with the
connection, that's network issue, because that's a
server you are not being able to talk to. So in my
mind, it should be dealt with as any other external
communication you do.

• And a bug in your SQL statement, well, that's an
issue in your logic

• Validation issues are a big source of problems […]
that would be a different kind of problem from, what
I think here Program Anomaly would be covered by
this.

• separate those between validation and proper
program logic. So if you make a mistake in the actual

• (Logic bugs) sounds very broad
• I feel the categorization non-functional defects and

functional defects, the opposite… sounds quite
important as well […] but here it’s somehow on the
same level

• (Taxonomy from Seaman et al.) seems to be very
code-specific

• I fail to see the difference between assignment /
initialization and checking for potential errors

• Logic and Algorithm / Method sounds to me like a
strange separation

• I feel like I somehow like more the separation of non
functional defects from the previous taxonomy
(Catolino et al.) in several kinds of issues like
permissions and performance

• That can be difficult when you have a very strict
model and very specific model of something, it can
be difficult to make something that fits into that
model. But once you do that, you avoid a lot of the
other issues. I think that's a trade off there.

logic seems to me different than failing to validate
something that was coming from some external
source.

• I don't see it (Data type) as big as to have their own
part in taxonomy.

• Separate the performance part where it would
include kind of memory leaks and things like this in
Haskell,

• Modelling issues is a big problem […]we're having a
problem with figuring out the right type for some
operation or function, so that it matches what we
expect to happen. […] that means both writing the
model and also implementing something that fits
the model.

• I think this (taxonomy) is more relevant at the later
stage of a project […]these are more for when you're
when you're taking it from the prototype to an
actual production system

• So talking about type conversions, and then if you
have a strict type system that doesn't really make
sense. Or it has a very different meaning.

• Because sometimes it's a blend... like, in the first one
you have configuration issues and then you have
network issues. But most network issues are kind of
configuration issues of the network stack or
something. Then you would have to decide which
one should I assign.

Taxonomies Usefulness How useful the

interviewees
perceive the
taxonomies

• So a few categorizations (from the first taxonomy)
definitely help but like this doesn't help me at all

• Find out that most of your bugs maybe belong to
one or the other category here and you might then
come up with some steps to avoid them in the
future.

• I think the first one (Catolino et al.) is more useful
than the second one (Seaman et al.)

• I don't see too much usefulness in programming… in
research yes, but not in programming in day-to-day
coding.

• A great way to document things
• Could be useful as a way to figure out where you as

a programmer or your team need to learn more
• If you all the time see problems with a particular

piece of your software because you see this
particular types of issues, then maybe you should
spend more time on this and I like that this could be
potentially guided by bug classification instead of
just being a gut feeling which is mostly how these
things are done now

• I think if you have a large project with lots of
different teams, then this could be good for kind of
triage, when you're like assigning different people to
different bugs

• External, internal interface, can be very useful
because usually there was someone that

• Maybe you see a lot of your bugs are external
interface, then you should be more diligent with
your tests for interfacing with the external systems.

• Whatever taxonomy you use or whatever you
analyse your bugs for, you should first ask yourself
what do you want to do with it afterwards. What's
the purpose of organizing or classifying it? Because
otherwise I think there's just too many options or
ways you could classify it, to be of any help

• we sometimes lack this vocabulary when talking to
colleagues, to say “Oh, I have a problem.” But what
kind of problem? It's a bug, right? But the bug is a
very broad thing.

• These are very Java-like programs, for these

taxonomies
• They don't mention all these other things that you

have in, like a strictly type language, like Haskell

implemented that interface in your system, so you
can kind of point towards the right person

• I think if you're a solo developer, or you're in a small
team, then I'm not sure that they help. I'm not sure
that they help enough that it's worth labelling every
issue as one of these

• It could be useful, but could just suck away time
from the actual fixing.

• It could be useful, especially if you're using some
stack... if you chose a specific database or a specific
GUI framework […]we should reconsider our choices
or hire more people for that.

• It really depends on the size of the project and the
time scale of the project

