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Abstract

Analysis of ultracold quantum gases exists in the domain of many body quantum theory and utilises
the formalism of second quantization. This means that many body problems are formulated in
terms of creation and annihilation operators [I]. The dynamics of ultracold quantum gases are often
formulated in terms of correlated clusters, which assign genuinely correlated atoms. The Heisenberg
equation of motion can be written in products of such clusters through a procedure known as the
cluster expansion [2]. Using a method first proposed by Fricke in 1996, the equations of motion for
the clusters, also known as cumulants, can be approximated as a closed set of ordinary differential
equations [3]. Solving these equations gives the dynamics of the cumulants, which can be related to
the transition amplitudes of different many body scattering processes within the gas. This cumulant
expansion procedure can then be used to describe the full dynamics of an ultracold quantum gas, and
can be applied to both bosons and fermions. The resulting equations are suited to predict interesting
ultracold phenomena like Bose-Einstein condensation for bosons [4] and formation of cooper pairs
for fermions [5].

The practical computation of the cumulant equations is however a time consuming and tedious
process when done manually, and is also easily prone to mistakes. It is however a systematic process
that should be well suited for automation by a computer script. In this work a Mathematica script is
developed that can calculate the cumulant equations for both Bose and Fermi gases at zero temper-
ature, possibly with mixtures of different components. The script relies on the second quantization
package SNEG [6]. The cumulant equations are first calculated generally through the cluster ex-
pansions, and then simplified under certain assumptions, like the coherent state approximation for
Bose gases. The developed script is highly customizable to accept different inputs, and can easily
be applied to different many body theories.

This work summarizes results obtained with the developed script up to fourth order, which
were obtained within very manageable computation times not exceeding 15 minutes for the most
complicated applications. These results are analysed and compared with the relevant literature,
which verified the correct operation of the script within the domain in which it was tested. This
work also contains an analysis of the cumulant equations as calculated for mixtures. Since the
mixture equations can use a host of different initial assumptions, it is a major advantage that this
script can quickly provide the user with the dynamics for any desired input.
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Chapter 1

Introduction

Accurate descriptions of many-particle systems are of interest to a wide range of fields. Historically
the dynamics of gases were first described in the context of classical thermodynamics, which provides
accurate macroscopic predictions near equilibrium. However the empirical model of thermodynamics
is inherently classical, and fails to take into account the quantum mechanical behaviour of particles
unveiled in the previous century. This is not an issue at everyday temperatures, where the number
of quantized states are closely packed enough to assume a continuous range of energies.

At lower energies or low concentrations however the macroscopic language of classical thermo-
dynamics becomes difficult to reconcile with the microscopic language of quantum theory. Very
successful efforts have been made to marry the two descriptions, which manifested in the widely
applicable theory of statistical mechanics. Essentially statistical mechanics poses that the stochas-
tic nature of quantum mechanics can be applied macroscopically, where the thermodynamically
preferable states will always have the highest probability [7]. Statistical mechanics has proven to be
an exceptionally powerful theory for describing physical phenomena. Chief amongst these are the
dynamics of phase transitions and the behaviour of Fermi and Bose gasses at low temperatures.

A famous example of a striking prediction made by the field of statistical mechanics is the phase
transition postulated by Bose and Einstein between 1924 and 1925, appropriately dubbed Bose-
Einstein Condensation (BEC). In this new phase of matter only the ground state of the system is
macroscopically occupied with particles. This definition already testifies how such a state can only
exist in a quantum mechanical model of the gas, where the particles attain eigenstates with discrete
energy levels. From a relatively simple model in which inner particle interactions were neglected
statistical mechanics was able to accurately predict the critical temperature at which BEC occurs.
To align theory and experimental date more closely though, particle interactions would have to be
included. The problem then becomes one of many body quantum physics [2] §].

The dynamics of many-body quantum systems are most straightforwardly analysed in the for-
malism of second quantization, which states that all essential information about a certain system
state is given by the occupancy of each single particle state. This formalism is convenient since
it is inherently suited to deal with identical indistinguishable particles. In fact the formalism of
second quantization is built up in such a way that it can easily deal with both fermions and bosons,
through the inclusion of fundamental commutation relations. These are enforced through creation
and annihilation operators, which form the central basis for all other operators in many body theory
.

In the last 30 years the analysis of ultracold quantum gases has been in part focused on describing
the dynamics of atom clusters, also called cumulants. These identify those atoms in the gas which



are genuinely correlated, and represent the transition amplitudes of certain scattering events within
the gas. Knowledge of the dynamics of these cumulants provides the dynamics of the gas under
consideration, in the form of the so called cumulant equations. These can be used to predict com-
plex processes in ultracold Fermi and Bose gases, like Bose Einstein condensation, Cooper pairing,
quantum depletion and many body scattering processes [4} [5].

The computation of the cumulant equations however often requires tedious operations on indices,
which are time consuming and easily prone to errors if done manually. In this work we present a
computer script that calculates the cumulant equations automatically, with highly customizable
input ensuring that the script can be used for many different theories. This report will both serve as
a manual for the use and operation of the script, and conduct analysis on a select set of results which
were obtained with the script. After this introductory chapter, chapter [2] will give an overview of the
many body theory which forms the backbone of the developed script. The chapter will start with a
brief mathematical overview of the formalism of second quantization, which forms the basis for all
theory. We then show how one can rewrite the Heisenberg equation in terms of clusters through the
cumulant expansion, and show the mathematical advantage of doing so.

Chapter [2| continues with more specific analysis of the cumulant theory surrounding both Bose
and Fermi gases. Here we introduce the coherent state approximation for bosons, and show how one
can interpret the cumulants as transition amplitudes for scattering processes. Moving on to chapter
we explain the script which accompanies this report. The operation of the script is explained
in detail, first by giving a general overview of the framework and then by explaining all custom
functions that were written for its operation. A large part of the scripts developed in this work focus
on the simplification of results. The procedures used for this are also explained in chapter

After the script has been fully introduced and explained, chapter [d] will give an overview of some
select results that were obtained during testing. These are analysed and checked against literature
to ensure that the script operates correctly. Here we also analyse the cumulant theory as applied to
Bose and Fermi mixtures, which is an interesting application of the developed code. Finally chapter
concludes by summarizing all results and findings.



Chapter 2

Theory

2.1 General formalism

In this section the quantum mechanical theory for an ultracold quantum gas is developed generally
for both bosons and fermions. This theory will form the backbone for the script developed in this
work, which aims to make calculations within the theory more efficient and less cumbersome. The
calculation and expansion of the cumulant equations is not much different for fermions and bosons,
but both types of gases allow for different assumptions and simplifications once the full equations
have been calculated. Thus after explaining the general formalism this chapter will focus on both
Bose gases and Fermi gases and explain their relevant properties as they relate to the dynamic
equations calculated in the script.

The natural language of quantum theory is that of operators, which represent some physical
observable and can be interpreted as the mathematical equivalent of the measurement process.
In any quantum theory it is convenient to express all physical operators in the same set of basis
operators, which have some well defined action on a given state. In more mathematical terms, one
looks for a set of operators which form a basis for all other operators in the relevant vector space.
In single particle quantum physics these basis operators are the position and momentum operators,
which physically represent a measurement of particle positions and momenta respectively. All other
operators in single particle quantum theory can be expressed in terms of these operators, which span
the single particle Hilbert space.

This thesis considers quantum gases, compromised of arbitrarily large numbers of particles. We
require a theory of many body quantum physics that works with arbitrarily large possible interacting
systems. The appropriate formalism for such systems is that of second quantization [IJ.

2.1.1 Second Quantization

Many body systems of identical particles are most easily analyzed using the second quantization
formalism. Essentially this formalism exploits the indistinguishability of identical particles to vastly
simplify the specification of many particle states. Instead of specifying the state of each particle
individually (first quantization), in second quantization only the occupancy of each state is relevant.
This means that physical states are only defined uniquely by the occupancy numbers of each single
particle state. As was explained at the beginning of this section we require our theory to have a basis
set of operators from which we can build up all other physical operators. In second quantization
this basis set consists of creation and annihilation operators, which create and annihilate particles



in certain states. In the language of second quantization then, these operators alter the states’
occupancy. Any operator written in its second quantization form is written as a combination of
creation and annihilation operators. [IL [9].

A large advantage of the second quantization formalism is the ease with which it handles both
fermions and bosons. In first quantization one would have to manually (anti)symmetrize the wave
function after evaluation. In second quantization however, the symmetry of the wave function is
built into the operators via the commutations relations they obey [I, [10]. Let us start by laying the
mathematical groundwork for the theory.

We work in some complete basis of orthonormal single particle momentum states {|k)} with
momentum hk in the one particle Hilbert space ;. To further generalise our model we allow the
gas to be a mixture of different species with equal atomic mass, denoted by Greek letters. We now
have the following properties of completeness and orthonormality.

Z Z ‘k0><ko‘ =1, <kU|QU’> = 5kq5m7’~ (21)
o k
Let us define operators that create and annihilate particles of species o in momentum state |k) as

i1 [0) =0, (olal . =0, (2.2)

which obey canonical commutation relations as

s o] = dradoe (2.3
€

(a0ac o al, = [a] b ] =0, (2.4)

Here € = —1 for bosons and € = 1 for fermions [I0] 11}, 12]. From these commutation relations the

appropriate symmetrisation properties for bosons and fermions immediately follow. In the second
quantization formalism we define (indistinguishable) particles by their states. This means that a
general many-particle (momentum) state in second quantization can be written as

[vn) = [kikaks ... kn) (2.5)

where k; refers to the momentum state of the jth particle in the system. Here the states 1,, forms a
complete basis for the many particle Hilbert space Hy, with equivalent definitions as those defined
for the single particle Hilbert space. Formally this many particle Hilbert space is simply the tensor
product of all single particle Hilbert spaces.

Since the creation and annihilation operators alter the number of particles in the gas, they do
not operate within a single Hilbert space H,,, but rather connect Hilbert spaces of different size.
To properly define the basis space in which these operators live we work in so called Fock space.
A Fock space is defined as the sum of all N particle Hilbert spaces up to an infinite amount of
particles. It should be noted that the size of the Fock space is usually truncated somewhat by the
physical properties of indistinguishable particles. In the state given by equation [2.5 all particles
are indistinguishable which means any interchange of particles should have no measurable effect.
This means that any reordering of states is either symmetric or antisymmetric. In theory one could
imagine many-particle states which contain mixed symmetric and antissymetric permutations. In



nature however, one only observes either completely symmetric or completely antisymmetric wave
functions, referred to as bosons and fermions respectively. This means that for example the boson
Fock space B only contains fully symmetric many-particle states, and vice versa for the fermion Fock
space F [IL 1] . Completeness in momentum Fock space is expressed mathematically as follows, for
the boson Fock space B .

symmetric

ST ) [kikeks.. . ky)kikoks. .. ky|=1. (2.6)
N=0kikaks...kn

We note that due to the symmetry or asymmetry of a many-particle state as written in equation 2.5
such a state does not singularly define the system. In other words, due to the indistinguishability
of particles one could shuffle around the particle numbers without changing the physical state. In
second quantization a system is only uniquely defined by the occupation number representation, in
which a state is written as

|¢N> = |nk1nk2nk3 > (2.7)

with ny, the occupation of the ith momentum state [I1]. We now see how in second quantization
system states are only uniquely defined by the occupancy numbers of single particle states, which
we also stated at the beginning of this section.

2.1.2 Many-body Hamiltonian

Now that the mathematical basis of second quantization has been defined, some concrete operators
can be considered. Here the Hamiltonian which will be used to model the quantum gas will be
described, following ref [12]. Let us first consider a single particle operator. According to the
completeness relation in equation we can write the sum of N single particle operators H, as

N
HO,N = Z Z Z |k0,i> <k0’i|H8|ktf’,i> <k0’,i‘ ) (2.8)

i=1 oo’ kj,q;

where i labels the ith particle in the N particle system. One can now derive that this form is
equivalent to the following expression in terms of creation and annihilation operators.

E[O,tot = Z Z <k0'|ﬁ0‘qa"> &;k&a’,q' (29)

oo’ k,q

Also again from the completeness relations we can write the sum of two body interaction potentials
as

N
1 R
Vv =735 E ) Y [keiko) (KoiKo Voo o i j) (Ao i ] (2.10)
2,4];1 oo’ ki,qi,k;,q;
1F]

This can also be rewritten to its second quantized form which gives



‘A/tot Z Z kq|Va o’ ‘k q > aq’ak/ (211)
o,0’ k,q,k’,q’

The proof for these identities in Fock space can be found in for example ref [I] or ref [I0]. It is

assumed that the bingle particle operator in the Hamiltonian is diagonal in the basis of momentum
states with elgenvalue " In physical terms this means we work in the plane wave basis, and it
is assumed that there are no other single particle potentials. This assumption is valid for systems
in which the interaction length is much shorter than the oscillator length of any external trapping
potential in which the gas is held. Over this region then, the gas is approximately homogeneous [4].
We are now in a position where we can write down the full Hamiltonian. Let us start with the single

particle contribution.

ﬁo,mt ZZ (ko |H0\qg kaU ,q

oo’ k,q

2
=>>.5 ’ 5000t Ocql o7 g (2.12)

oo’ k,q

Similarly one can derive the two body interaction potential. First we split the momenta into a center
of mass and a relative component as follows.

|kq> = |Kcm> |Krel> s

) (2.13)
|Krel> = ‘Q(k - q)> :

We assume the interaction potential is diagonal in the center of mass contribution with eigenvalue

1. In other words, we consider translationally invariant interaction potentials which only depend on

the relative momenta of the particles. Now we can derive the following general expression.

N 1 i 1 N 1 A
Vot = 3 Z § zk; /a’liat]; <2(k =) |\Vo,or §(k/ - q’)> Ok+q,k' +q' (g Ok
oo (2.14)
D) Z Z VU o’ k K+ 2(31) 2 (k k/)) G5 xt+q® Ir k/— ao’,k’da,k-
o,0’ k,k/ .q
Here we have defined
VU,T(k’ q) = <k|VU,T‘Q> (2.15)

which will be used throughout this report. Note that in deriving these expressions we have assumed
that the interaction potential is always symmetric under exchange of particles. In other words
Vo, (k,q) = V; -(—k, —q) So our total Hamiltonian becomes



Htot = Ho,tot + Viot

R om T (2.16)

1 1 1 ) ) o
+3 > Voo (5 (k — K +2q), 5 (k - K))al ol 1o gl ok
o,0" k, k' ,q

2.1.3 Separable potential

In deriving the Hamiltonian in equation the potential was separated into center of mass and
relative components. Sometimes in literature, as in refs [I3] [I4], an additional assumption is applied.
The relative potential operator is then written as

Vior = A[CXCI, (2.17)

where A is the effective interaction strength and |¢) is the form factor. A potential that can be
written in this way is referred to as a separable potential. In the notation of equation we can
then write

Vi(k,q) = X((k)¢"(q). (2.18)

Note that writing the mixture potential which we have used up to this point would require more
information about the dependence of the form factor ¢ on the mixture components. Since the
potential in equation [2.15|is more general, it will be used throughout most of this thesis. At the end
of the single component script the user can then optionally include a separable potential if this is
desired.

2.1.4 Equations of motion

Now that we have our many body Hamiltonian in second quantization, the essential problem becomes
the solution of the Schrédinger equation for this Hamiltonian. In the formalism of creation/annihi-
lation operators, it is most useful to work in the Heisenberg picture of quantum theory, since this
shifts the time dependence to the operators themselves. We describe the state of a system by a
statistical operator or density matrix w(t) and the expectation values of all relevant operators or
observables.

<A> = Tr[w(t)Al. (2.19)

Then with Heisenbergs equation of motion we find for the evolution equations of operators that

9 /- o
i <A>:<[A,Ho]>. 2.20
"ot tot (2.20)
Writing down these equations involves simplifying the commutators in the rhs of the EoM. As an

example of such a calculation, consider the evolution equation for the creation operator of a particle
of species 7 in state |p). In the following derivation the commutator is calculated algebraically.



[ Tp,Htot} = [ Tp7H0 tot +‘/Ytot}

— [l s Hotor] + [F s Vi

The commutator with both the single particle kinetic energy term and with the interaction potential
energy will need to be evaluated. Let us first consider the kinetic energy term

(2.21)

o,k
R2k? R
= Z m (aj'p Lka’Uk _G'T kaakaip)
o,k
Pk i i 2.1 ot
=D 5 (@l pal o — 0l 0odup — il pal o) (2.22)
o,k
k2
= - Z 9 gkéa‘rakp
o,k
2.2
L
2m P

To evaluate the commutator with the interaction term, first consider the operator product given as

a, k+qa’:r7’ gl ko Kl
= aj;- k+q? j;/ K —qlo’ K’ (05r0k,p — edjrr plok)

- CLL k+q? L’ K/ — (aa’,k’6075k,p €(05r70k' p — Trpa[, k')(lg K) (2.23)
= a:r, k+q?@ :[;’ K/ — ag',k'émék,p - Edlyk+qa/l",klfqa0'7k60"7'6k’7p

AT T ~
+6 an ok+q o" K/ — aU’,k’aa,k'

Using this result we can evaluate the commutator as

1 . . . .
|: Tpa%Ot:| = 5 Z Z Vao k k/+2q) (k k/))|: Tp’ Z’,k+qai",k’—qa0/7k,a‘7»k:|

o,0’' kK k' ,q

1
=32 Y Ve k K+ 2q), (k K))[€] 1y g s qltor e bordicn
o,0’ k,k’,q

1t ~F N
Qg 1t qlor 1 —qllo ko7 Ok p}

ZZ{GVTU p k+2q) 2(p k)) ar p+q?@ jrk q ok

o k,q

1 1 . N .
— Vour (5 (k=P +20), 5 (K = P))a} sy gt pqitonc -

DN | =

(2.24)



Summarising these results and applying equation [2.20| we now write down the EoM for the creation
operator.

L0 hp?
gt = =g 0
1 1 1
At At .
52 Z { VeGP —k+20). 5 (P = K))al gl s_qiio (2.25)
o kq

1 1 . . R
_ VU,T(g(k —p+2q), §(k - p))a;kJrqai’pfqag,k}.

2.1.5 Cluster expansion

After writing down Heisenberg’s equation we can start working towards a clear system of differential
equations in the observables. Since all operators are expressed in creation/annihilation operators, all
observables can be found by the expectation values of these operators. As an example, consider the
evolution equation for the annihilation operator in a Bose gas, for which the method of calculation
is exactly equivalent to the creation operator in the previous section. Taking the expectation value
of Heisenberg’s equation we find

L0 . h2p? .
Zha (Grp) = om (Gr,p)
1 vt Lo N .
T3 Z[,: kz(; or(5k=p+a), 5 (k=P —a)) {8 qlrp+alok (2.26)
1 1 ~f N N
VeGP~ k), 5 (P~ k = @) (@ s _qiirp-atio)

One notices that such an equation is not easily solved or approximated. Ideally we would like to
write both expectation values in this equation in terms of the same variables. The equation can
then be combined with equations of motion for the other operator products to obtain a system of
ordinary differential equations. The canonical way of achieving this is by the cluster expansion,
which expands the expectation values in so called cumulants of the operators. These cumulants
allow one to rewrite the dynamic equation into a system of ordinary differential equations [3]. The
cluster expansion of a set of creation/annihilation operators {B;} is defined as follows

{
1By B ‘ <Bl>c <BZBS>C + < 2>C <Blg3>c, (2.27)
+

The sum runs over all products of partitions of the set of operators {Bz}, where the ordering of
operators is conserved inside the cumulants. For fermions one should take care to include a minus



sign if the re-ordering of operators has uneven parity. We define the order of a cumulant as the
number of operators it contains. An important property of the cumulants is that for orders n > 2
the operators exactly commute or anti-commute for bosons and fermions respectively.

<---BiBi+l >c = —€ <BZ+1BZ>C (228)

Let us define some shorthand notation for cumulants as

_'_ c
Po,o’ k,q = \ g kAo’ C1> )
A ~ C
Koo' kaq = (Goklo’ q) (2.29)
c
1,2 /A N
Ta,a’ 7.k,q,k/ T aa,kagl an,k’>

¢

0,3 ~ ~ ~
Ta',a’,‘r,k,q,k/ = <a0,ka0’,qaﬂk’> .

We refer to first, second and third order cumulants as singlets, doublets and triplets respectively.
Using this notation the cluster expansion of equation [2:26] was found to equal

. 2p2
ihwf,pfhbwfp ZZ[ k p+a), (k*pr))

o kq
1,2
{To rok+aptak T (o Kk+afroptak T Urpralooktak
+ YokPorktapta + wz,k+q¢ﬂp+q¢mk} (2.30)
1 1 1.2
+ VT U( (p k + q) 2 (p - k - q)){Ta';ﬂo',k—q,p—q,k
+ wa,qu“mf,pfq,k + Y p—aPo,ok—ak + Yo kPork—ap—q

% ke q¥rp—atink )

As an example of a direct application of the previous derivation, lets consider equation [2:30] and
neglect all cumulants above first order. This gives

h2p2
ﬁ
+ 5 Z > o, k{ rr (k p+q) (k — P~ Q)Y krq¥rpia (2.31)

o k,q

Z.h'l/}'r,p = 'l/}'r,p

1 1

+Vro(5(p —k+a), 5 (P~ K~ @)U qlrpa)s

which is an equivalent to the so called Gross-Pitaevskii equation in the Born approximation. This
is a closed ordinary differential equation which one will have to solve as a function of ¢ and p. The
solution can then be used to describe the dynamics of the system provided the gas is dilute and
weakly interacting [2) [§]. The mathematical advantage of the cluster expansion method is evident,

10



but the cumulants also have a well defined physical meaning. To really understand the physical
context of the cumulant approach however, we need to more specifically define our quantum gas. So
far everything has been essentially general. Now we can start to consider how the formalism can be
applied to Bose and Fermi gases.

2.2 Condensed Bose gases

The previous sections have introduced the general framework in which quantum gases can be ana-
lyzed. This section will more specifically consider how these methods may be applied to condensed
Bose gases. A condensed Bose gas is defined as a boson gas in which (nearly) all particles have
condensed to some ground state. Thus the ground state is the only state in the system which is
macroscopically occupied, and all particles in this state are so strongly correlated that they are often
treated as one macroscopic entity, referred to as the condensate [].

2.2.1 Coherent state approximation

Let us return to the system modelled at the beginning of this chapter. We have a Bose gas where
particle states are described in a complete momentum basis, and particles interact via pairwise
interactions Now let us take a closer look at equation which defines the cluster expansion into
cumulants. Consider the expansion of the two body operator,

<d;k&mq> = <&Z,k> <do7q>c + <&L,kdU;Q> . (2.32)

We see that the cluster expansion has effectively split the expectation value into a factored product,
which defines that part of the expectation value which is classically uncorrelated, and an extra
cumulant term. This two atom cluster then defines the actual genuine correlation between the two
atoms. For nth order cluster expansions the interpretation is similar, in that all factorizations of
cumulants represent classical products between correlated atom clusters while the full nth order
cumulant represents the complete correlation between all atoms. In second order such a formulation
in terms of clusters is equivalent to Wicks theorem [9].

For a direct physical interpretation of the cumulants let us consider a (nearly) condensed Bose
gas where the number of excited atoms is very low. We model the dynamics of such a system by
the cumulant expansion method. One problem with this formalism is the condensate itself, which
as stated earlier is heavily correlated and acts as one macroscopic entity. Thus if the condensate
contains N atoms all Nth order correlations must be included. To escape this inefficiency several
different approaches have been proposed in literature, though their mathematical representation is
practically equivalent.

One suggestion in literature is to switch to the so called excitation picture of Bose-Einstein
condensation, where the condensate is assumed to be a vacuum state [I5]. In this picture the
occupancy of the excited states is kept identical to the "real” system. This means that one can
effectively ignore the correlations inside the condensate and only focus on the excitation of atoms
into higher states.

The picture of Bose-Einstein condensation adopted here is somewhat different, known as the
coherent state approximation. We define the ground state as the state for which k = 0, and assume
it is macroscopically occupied. It is assumed that the entire condensate forms a coherent state,
which means the condensate wave function is an eigenfunction of the annihilation operator, with
eigenvalue 19. Then mathematically it must hold that

11



&U,O ‘BEC> = wa,O |BEC> ) <do,0> = ¢a,o, (233)

where |BEC) is the many body wave function for the condensate. Also, in general we can decompose
operators as

CALU,k = ¢a,k + 5&a,ka (234)

with (G, k) = Yok the expectation value of the operator and dd, x the quantum fluctuations around
this expectation value. In a Bose condensed gas only the k = 0 state is macroscopically occupied, so
Yo x = Yo,00k,0. Then since it was assumed that the condensate forms a coherent state, da, o = 0.
In physical terms, the assumption was made that the occupation of the condensate momentum mode
does not fluctuate, and that the excited modes are only described by fluctuations and not occupied
beyond this. The coherent state approximation is thus essentially a mean field approach to the
interactions. The approximation is only valid if the condensate mode is the only macroscopically
occupied mode [8] [13].

2.2.2 Cumulants

Now we can start considering the cumulants. Since the Hamiltonian is translationally invariant,
as signified by the translationally invariant potential and the absence of trapping potentials, any
cumulant must conserve momentum. This means the sum of all wave vectors in the creation operators
must equal the wave vector sum in the annihilation operators. Any cumulants which do not obey
this condition are not physical and must vanish. Let us now consider some cumulants of the zero
momentum mode, as an example.

<d0',0>C = <&o70> = ’(/}0',0
<do',0dr;,0>C = <da,0&0,0> - <da,0>c <da,0>c =0
<&J,O&U,Odrf,0>c = <da,0&a,0&a,0> -3 <d0,0dU,O>C <€L0,O>C (235)

—{l6,0) (0,00 {G0,0)" =0

Here one can see that the coherent state approximation has eliminated the issue of higher order
correlations inside the condensate, which all become trivially zero. The correlations of the excited
momentum modes then, are defined as follows. As explained, these cumulants must all obey con-
servation of momentum.

c
PN 12 /At J
Zba,k = <aa,k> , Tg7k7q = <a07k+qaa,qao,k> )
(&
JERAPS BN 0,3 _ /a A oA c
Pok = a’a,ka’U7k ’ To’,k,q_ <a0»—k—qa0;qa’0,k> ’
(&
~ ~ c 2,2 A AT ~ ~
Rok = <ad,—kaa',k> 5 Qo‘,k,k’,q = <ai7qaa,k,amk/+kamq_k> N (236)
QL3 /At A A s ¢
okk,q — \%oktk'+qloklok o,q)

Qgii,k/,q = <&a,7k—k’7qda,k&mk’&U’Q>C'
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Here we have also included the fourth order cumulants or quadruplets, denoted as ). Any other
cumulants appearing in the expansion are complex conjugates of the cumulants defined above. It
should be noted that due to translational invariance p_x = px, with similar relations for the other
cumulants.

The first order cumulant 1), x is explained by the coherent state approximation, where it vanishes
for all but the zero momentum mode. This cumulant mathematically represents the condensate. p, x
counts the occupation of a certain momentum state, and is thus sometimes referred to as the density
matrix. Since only the zero momentum mode is assumed to be macroscopically occupied, this
number is always very small.

Continuing down the list, the x cumulant represents the scattering of two atoms with equal but
opposite momenta into the BEC. Note that the complex conjugate of k gives the opposite process
where two atoms in the BEC scatter to form two particles in the excited states k and —k, also known
as quantum depletion. The value of this cumulant is referred to as the transition amplitude of such
a scattering event [4]. Following this line of reasoning, the T' cumulants also represent scattering
processes, where for example T;E q represents the scattering of two excited atoms with one particle
transferring all its momentum to the other one. Interestingly one can also imagine two particles
scattering with the condensate to excite a third particle which was previously condensed. We thus
see that 712 can be filled by different multiple body scattering processes. Conversely, the Tf’i q Can
only represent a three particle scattering process [4]. Figure illustrates the points made in this
section.

1,2
Tcr,k,q

Figure 2.1: Simplified illustration of scattering events with their corresponding cumulants. Note
that the 712 cumulant is filled by both two and three particle scattering. Ingoing and outgoing
particles drawn in red and green respectively.

This physical interpretation shows that solving the dynamics of the cumulants provides the dynamics
of the entire system, where complex phenomena such as quantum depletion and scattering into the
condensate are entirely described. Obviously the expectation value of the operators also contains this
information, but it is intermixed with all other correlations of the operator products, which does
not allow for such straightforward physical interpretations. The cluster expansion has effectively
split the expectation values into cumulants that describe all correlated dynamic processes in the
condensate. Since these cumulants also allow us to write the Heisenberg equation as a system of
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closed ordinary differential equations, the dynamics of such cumulants can in principal be solved.

2.2.3 Bose mixtures

The momentum conserving cumulants written down in equation all act within one component
of the gas, specifically the ¢ component. Stating that these are the only nonzero cumulants in
the equations actually makes an assumption about the quantum gas in question. In general, so
called mixture cumulants will also exist in the gas, which describe the interactions between different
components. Some second and third order mixture cumulants read

c c
_ /At - L2 _ /st

Pork = CLo’,ka"'»k ’ o,0,m,k,q ao’,kJranvqa""vk ’ (2 37)
_ s . \c T3 L. e '

Kok = (G, —kar k)" orkq = (G0, —k—qlrqlrk)"

The specific physical interpretation of these mixture cumulants will depend on the role assigned to
the Greek index. In general however a gas consisting of two components o and 7, will have two
coherent condensates represented by 1,0 and 1, ¢. Using this we can consider scattering processes
that might constitute the mixture cumulants defined in equation The psrx represents a
process in which an excitation of species o is created at the cost of a particle of species 7. One can
imagine a scattering process in which an excited particle of species 7 scatters with the ¢ condensate,
thus exciting one particle. The impeding 7 particle is then scattered into its own condensate. The
mixture Ke -k cumulant will describe much the same processes as the single component version,
although it can now also describe two particle scattering of different species into their respective
condensates. For third order cumulants there are obviously many more mixture cumulants that one
could write down. Two examples are given in equation [2.3

The T;’f‘k,q cumulant will represent some collision in which two 7 particles excite an atom in
the o condensate, transferring all their momenta in the process. Note that this mixture cumulant
is always a three body scattering process whereas the single component version could still be filled
by two body scattering. Tc(f),f,‘r,k,q can now additionally represent three body scattering between
different species.

One should note that different models of study will be interested in different mixture cumulants.
For example the ps o x cumulant as described above was related to a very specific scattering process.
Different models might choose to set such cumulants to zero and thus assume that particles can not
scatter in this way. Inclusion of all mixture cumulants will obviously give the most accurate result,
but applying smart approximations can lead to much shorter cumulant equations. Ultimately the
choice for which mixture cumulants to include can only be answered when a specific system of
study has been defined. If one were to exclude all mixture cumulants from the system, then all
interspecies scattering processes are ignored. Because of this we will refer to such a system as a
”"Non-interacting mixture” in this work.

2.2.4 Truncating the cumulant expansion

Effectively, the higher order and non number-conserving cumulants represent the deviation from the
interaction free model of a quantum gas. This is in agreement with the interpretation of the cumulant
expansion as a measure of the correlation between atom clusters. The stronger the interaction, the
stronger the correlations and thus the more relevant higher order cumulants become. Usually higher
order cumulants are lower in amplitude than their lower order counterparts, although deciding where
to truncate the expansion requires careful consideration of the interactions present in the system [2].
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Truncating the cumulant expansion is also referred to as breaking the hierarchy. This is because the
(unsolvable) exponential growth of clusters with each higher order cumulant equation is dubbed the
BBKGY hierarchy in literature [4].

Interaction strength in Bose gases is controlled by the s-wave scattering length a, which is calcu-
lated from the number of particles in a scattering volume a3. We characterize the interaction length
by the diluteness parameter FL|a|‘3, with n the particle density [8]. Experimentally this parameter
can be tuned by so called Feshbach resonances using a magnetic field. This allows experimental-
ists to study the Bose gas in different interaction regimes. If the scattering length becomes much
larger than the inner particle spacing, all particles become heavily correlated. This is known as the
unitarity regime, where strong interactions play the largest role in interacting atoms [13].

In 1996 Fricke suggested a general methodology for ”breaking the hierarchy” in the cumulant
equations. From equation [2.30| we notice that the equation of motion for a cumulant of order n has
cumulants up to order n + 2 on the rhs. Fricke proposed that if one seeks all cumulant equations
up to a certain order n, then for each EOM neglect all cumulants of order higher than n, and
only consider the dynamics of cumulants up to order n. This provides a system of closed ordinary
differential equations which one can attempt to solve for the dynamics of the system. [3]. An
example of this method was already shown in the previous section, where the cumulant equations
were approximated up to order n = 1. This yields the Gross-Pitaevski equation which is applicable
in the assumption that scattering lengths are relatively small. Additionally, one assumes that the
gas is dilute enough so higher order correlations between particles can be neglected [2].

If one were to use Fricke’s method up to order n = 2 then after calculating the second order cu-
mulant equations one would obtain a closed system of so called Hartree-Fock-Bogoliubov equations.
It should be noted that such an approach is equivalent to an expansion in VAt which means the
lower order approximations are only valid for short timescales [3].

Obviously the method suggested by Fricke is not the only way to truncate the expansion. Other
methods have been proposed which give more accurate dynamics of the multiple scattering processes
in quantum gases. However the general idea behind all these methods is to provide a general
procedure to break the hierarchy of the dynamic equations, which doesn’t allow for any ambiguity
in the approximation [2].

Using Frickes method up to order 1 with the coherent state approximation will then give the
dynamics of all first order cumulants, which in the coherent state approximation is only the dynamics
of the condensate or .

ihi/.if,o = Z Va'r (0; 0)|"/)a,0|27/}7',0~ (238)

This then is the equivalent of the Gross-Pitaevski equation presented in equation for the con-
densed Bose gas in the coherent state approximation. As was discussed before, this equation can
only hold in a Bose gas that is sufficiently dilute for scattering processes to be ignored. This also
explains the absence of the p and k cumulants which originate from scattering events. This equation
looks very similar to the Schrodinger equation in momentum space and is thus sometimes referred
to as the Nonlinear Schrodinger Equation (NLSE) in literature [I6]. The natural progression for cu-
mulant theory now is to calculate the equations of motion for higher order cumulants, which would
allow for the inclusion of scattering processes. The script developed in this work automates this
exact procedure, namely the calculation and proper simplification of the cumulant equations up to
higher orders.
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2.3 Fermi gases

We now shift our focus from the condensed Bose gas to the general Fermi gas, which only contains
fermions. Effectively this means a change of commutations relations and thus statistics, which leads
to entirely different behaviour. In particular due to the anti symmetry of the fermion wavefunction
the Pauli exclusion principle holds, which states that no two particles can exist in the same quantum
state. This then makes a fermion condensate impossible, since the ground state can only house as
many fermions as its degeneracy allows. At low temperatures N fermions will then occupy the N
single particle states of lowest energy. This energy of the highest state occupied is then referred to
as the Fermi level [7].

2.3.1 Fermion Hamiltonian

The antisymmetry of fermion wavefunctions allows us to rewrite the Hamiltonian in equation [2.16]
into a more convenient form. In the original Hamiltonian no assumption was made on the symmetry
or asymmetry of the matrix elements in the potential. Let us now write an antisymmetrized matrix
element with the subscript A. We can define such a matrix element by the following identity [10} [IT].

(ka|V|K'q'), = (kq|V|K'q) — (kq|V|q'k) (2.39)

By applying the fermion commutation relations we can now write the interaction term for fermions
as

N 1 R N A
Vi =7 D gl (ka|VIK'q) y dine. (2.40)
k,q.k’,q’

The full many body Hamiltonian for fermions then becomes

. k2
Hiot = Z om aLkao,k
ok

1 1 1 . ) o
+ > V(;i,,(§(k ~ K +2q), 5 (k~ K))al ol 10— qlor ok
o,0" k,k/,q

(2.41)

Use of anti symmetrized matrix elements has altered the interaction term in the Hamiltonian by a
factor of % Although the difference in the Hamiltonian is minimal, the cumulant equations often
contain many expressions like the one on the rhs in [2.:39 Thus this definition allows us to shorten
the final equations considerably.

2.3.2 Fermion wave function

For the boson gas we introduced the coherent state approximation which allowed us to effectively
handle the highly correlated condensate. Obviously in a Fermi gas such an assumption is not
necessary and also not physical. In literature different wave functions have been proposed for a
many body Fermi gas. Examples of these are Slater determinants, quasi-particle vacuums based on
Bogoliubov transformations and generalized density matrices [I0, [I7]. A simple specific example of
a ground state wave function one might use for fermions reads as
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) =[] a0}, (2.42)
k

where the product runs over all occupied single particle momentum states, which in ground state
means all states beneath the Fermi level [I§]. In this work however the exact wave function used
is further left unspecified, since this has no relevant impact on the calculation of the cumulant
expansion. In actuality the choice of wave function will mean different cumulants are required.
Changing the input cumulants can easily be done in the script developed in chapter

2.3.3 Cumulants

For fermions we still assume a translationally invariant Hamiltonian, which means all cumulants
must conserve momentum, as was the case for bosons.

Due to the coherent state approximation made for bosons 1st order cumulants like (a, o) had
to be included in the cumulant expansion. For fermions these cumulants are always zero and can
thus be ignored in all expansions [I0]. By extension then, all cumulants of uneven order can be set
to zero for fermions. Thus the only relevant cumulants for fermions read

_i_ c

Pok, = <ag,kao,k> »

~ ~ c

Ro,—k .k = < o',fkaa,k> )
C

2,2 Y2 TS N N
Qo qka—kk+k = <al,qao,k’a07k/+ka07q—k> ’ (2.43)

1,3 _ /At A ¢
Qa,q,k’,k_ ao,k+k’+qa’avka‘77k’a0,q ’
0,4 A ~ ~ ~ c
Qoqr ik = (G0, k-1 —qloklok loq) -

As always, researchers can choose to neglect select cumulants to obtain shorter expressions, as was
done with Q%% in ref [5]. The ordering of indices in the above notation has also been kept in
accordance with this paper. Note that we no longer use shorthand notation for the wave vectors in
K, and instead explicitly mention the wavevector of each operator. This is because x is no longer a
symmetric matrix. Due to commutation relations we now have xk_ix x = —kKk,—k. Because of this it
is important to be more specific with the notation.

For fermions the k_y  cumulant is also called the pairing tensor, and is related to the formation
of correlated Cooper pairs which show very similar behaviour to bosons [I9]. Note that the s
cumulant as described above does not necessarily conserve particle number, since two particles are
removed from the system with no direct counter. The exact details here however depend on the
chosen wave function. For example if the gas is (nearly) in a ground state defined by equation m
with k a momentum state below the Fermi level, then the £ cumulant would be interpreted as an
excitation of a Cooper pair to a state above the Fermi level. Also, since Cooper pairs act as bosons
they can form their own condensate. In this way the x cumulant can be interpreted as excitations
from the ”Cooper condensate”. Obviously the number of Cooper pairs should then be quite large.

The p cumulant still counts states in a given momentum mode. Obviously for a single component
Fermi gas p can never be more than 1.
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2.3.4 Fermi mixtures

Similarly to the Bose gas, we can also consider fermion mixture cumulants. Much of the analysis
is similar to the Bose gas and won’t be repeated here, but one application is of specific interest
for Fermi mixtures, namely Fermi gases with particles of different spin. Consider for example a
gas consisting of electrons, which have either spin up or spin down. We refer to the spin up state
as o and spin down as 7. Interesting here is the p cumulant, which can now describe a process
wholly different from scattering. It is well known that electrons will attempt to align their spin (or
magnetic dipole moment ;) with an external magnetic field, a phenomena known as paramagnetism.
Knowing this, one notices that the p, » cumulant could also represent spin flipping under influence
of an external magnetic field.

This is a clean example of how cumulant theory and its results can be applied to explore the
magnetic behaviour of fermion systems. In literature the formalism has also been used to explore
dipole-dipole interactions in denegerate Fermi gases of %Dy and $"Dy [E], and even in neutron
stars [20].
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Chapter 3

Model

As shown in the theory section, formulating the dynamic equations becomes a cumbersome task for
higher order cumulants, and mistakes can easily creep into manual derivations by the abundance of
different indices. This work presents a Mathematica script which calculates the cumulant equations
up to arbitrary order automatically, and can print the result simplified under certain assumptions.
This means the script can be applied both generally and also to several specific systems. The script
can also easily be expanded to write down the cumulant equations for more specialized systems,
owing to Mathematica’s ease of adaptability.

During the writing of this script the most prevalent challenges that had to be overcome were
related to limitations with functions in Mathematica and used packages. Additionally, obtaining
results within manageable computation times proved a challenge. Throughout this chapter the
developed scripts are explained, and we show how the above challenges were overcome. First the
model environment, Mathematica, is introduced. This script heavily relies on a second quantization
package for Mathematica called SNEG [6]. Since this package is so important for this script, a short
overview of its use will also be given in this section.

The next section will then provide the general framework which the script is based upon, and
gives a step by step walk through of the computation. This work relies on several custom functions
which expand the SNEG package to work with the cumulant expansion. These custom functions will
be introduced and explained in the next section, which gives more detailed insight into the exact
workings of the script. Finally, the last section will discuss the way in which the script simplifies
the cumulant equations under certain assumptions, which will clearly be dependent on the specific
application.

3.1 Model environment

The script was written using Mathematica in its interactive notebook environment. The choice to use
Mathematica was made because it is naturally suited to deal with and simplify symbolic expressions,
and its output is generally printed in an easily interpreted form. This contrasts with other numeric
software that could be applied to this problem like Matlab. Where such software might provide
advantages in programmability and computation time, it becomes significantly more difficult to
work with complicated symbolic expression in its interfaces. Since the calculation of the cumulant
equations will always involve long and symbolically heavy operator expressions, Mathematica was
taken to be the optimal choice. Throughout this chapter we notate Mathematica functions as
function][..] and variables as variable.

19



Next to the functions inherent to Mathematica, the script uses the Mathematica package ”SNEG”
written by Rok Zitko [6]. This package extends Mathematica to be able to work in the language
of second quantization. The reach of SNEG is quite wide in its applications, however for this work
only a small subset of its features are important. These are mainly related to the application of
commutation relations, the calculation of operator commutators and the simplification of sums over
operator expressions. To clearly explain the code, a quick overview of the relevant features in the
SNEG package are given here.

Most important in writing down the cumulant equations are operations on creation and anni-
hilation operators. In SNEG such operators are defined by specifying several operator properties.
First one defines whether SNEG should treat the operator as if it acts on bosons or fermions. Let
us define an operator a for bosons and an operator b for fermions in the SNEG package as follows.

snegbosonoperators|[a], snegfermionoperators[b].

To more specifically define creation and annihilation operators SNEG requires function arguments
to be given to the allocated variables. The first argument specifies whether the operator is a creation
or annihilation operator, while all other arguments are interpreted as indices. So if one would like to
define the annihilation operator for boson state |p). as it was used throughout the theory section,
the corresponding Mathematica code would be a[AN, 7, p]. The first argument can read either
AN or CR for annihilation and creation operators respectively. SNEG needs to make a distinction
between letters used as indices and those used as normal variables. The indices are specified at the
start of the script, by the snegfreeindexes]..] function.

The SNEG package allows for calculations with these operators which automatically obey the
commutation relations defined in the theory chapter. Such commutative operator products are
defined in the SNEG package by the nc|[..] function, where the multiplied operators can be given
as arguments. Care should be taken that SNEG automatically normal orders operator products,
in which the commutation relations are applied when necessary. This script also heavily relies on
the sum][..] function in SNEG, which modifies the native sum function in Mathematica to work
properly in the second quantization formalism, and is also better suited to handle symbolic sums.
As discussed before, it is important that al indexes in the SNEG sum function are properly defined
as indices in the script. One final SNEG function that is central to the operation of this script is the
komutator][..] function, which simply calculates the commutator between two operator expressions.

3.2 Script operation

Now that the framework in which the script operates has been introduced, it is instructive to consider
the general work flow of the script. This section will give a step by step walk through of the entire
script starting from the beginning and ending with the final (simplified) cumulant equations. Note
that the Mathematica notebook itself also contains comments which give a brief explanation with
each step. This section aims to expand on these comments and provide some more detail.

Note that every script is split into two sections, one for bosons and one for fermions. In a lot of
ways these two sections operate in similar ways and follow the same structure, but the differences
will be clearly highlighted in this chapter.

3.2.1 Species index

In the theory section an extra Greek index was introduced in all creation and annihilation operators,
which would specify the specific species of the atom in question. The way this index is handled
however, depends on the exact details of the model used in a specific application. To make the
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script more widely applicable, several versions were written which deal with the Greek index in a
different way. All these scripts are based on the same structure and use the same functions, but
differ somewhat in their definitions and rule sets. Each of these three scripts contains a boson and
fermion version.

e Single Component.nb Here the Greek index is ignored completely. Effectively this means
a single component quantum gas is considered. All definitions from chapter [2] still hold but
without the extra index. This is the simplest version of the script.

e Non-Interacting Mixture.nb Here the Greek index is used, however it is assumed that all
cumulants which contain different Greek indices are zero. Physically this script considers a
multicomponent gas in which interaction processes between different components (represented
by mixture cumulants) are ignored. Note that this name is somewhat misleading since there
is still interspecies interaction through the pairwise potential. In this report if we say non-
interacting mixture we refer explicitly to the cumulants.

e Interacting Mixture.nb Here the index is used generally, without any assumptions made
about the gas. Thus all mixture cumulants which describe interaction processes between the
components are used in computations. This version of the script is most general, but also gives
the longest expressions.

3.2.2 Preamble

Before looking at the entire script, let us consider the blocks of code at the start. Next to the functions
inherent to Mathematica and the additional functions supplied by the SNEG package, several custom
functions were written which expand the SNEG package to be able to carry out the operations
needed for the derivation of the cumulant equations. These functions are defined in the additional
Mathematica library ”cuFunctions.nb”. It is essential that the SNEG package and the function
library are loaded at the beginning of the script. The very first block takes care of this. During
the writing of the script it was often found to be convenient to use slightly different notation in the
Mathematica script compared to the conventions used in the report. Also, long expressions printed
in Mathematica’s notation are often very messy and hard to interpret. Conveniently Mathematica is
able to rewrite expression to a form in conventional mathematical notation, which in Mathematica
is referred to as the ”TraditionalForm|[..]”. At some points in the code TraditionalForm)]..]
notation will be defined for several functions. These do not impact calculation, and whenever the
Mathematica form differs from the traditional form it will be mentioned in this chapter.

Before the script starts with actual calculation, the user can define all indices and other variables
to be used. This will be referred to as the preamble of the report, and exists of two code blocks.
The first is a set of definitions, which are explained in table
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Function/variable Description Default
Define all variables to be used as
snegbosonoperators]..] creation/annihilation operators | a
for bosons

Define all variables to be used as
snegfermionoperators|..] | creation/annihilation operators | b
for fermions

Define wave vector indices that

sumwavevectors are summed over in Hamiltonian {kaklaql}

Define species indices that are

stmspecies summed over in Hamiltonian {o.01}
opwavevectors Define wave vector indices that (p.l,g)
p aren’t summed over b...8
opspecies Define species indices that (A}
Psp aren’t summed over 7
Define the normal ordering for For bosons:
. EMPTY
ordering]..] operators, most relevant for .
fermions For fermions:
' SEA

Table 3.1: All variables defined and functions run in the preamble of the Mathematica script, with
an explanation of their meaning. The third column contains the default values. Note that not all of
these appear in all versions of the script.

The last line contains the ordering]..] function, which defines the state specific normal ordering
SNEG should use for a given operator. This ordering can be defined as EMPTY, in which case
SNEG assumes that all states are non filled. This is most appropriate for a Bose Einstein Condensate.
One could also define the ordering as SEA, which assumes that all states up to the Fermi level are
filled with atoms, most appropriate for a Fermi gas. Note that in SNEG we notate fermion operators
as b, while in this report they will always be written as a.

The second cell in the preamble only contains two more definitions, but they are central to
the operation of the entire script. The first variable "order” defines the order of approximation
which the script will use. The order variable is actually a list containing two values, which gives
the user more control over how the equations are calculated. The first number in the list gives
the maximum order of cumulant equation that will be calculated. The second number of the list
defines the maximum order of cumulant that should be kept on the right hand side of the Heisenberg
equation after the cluster expansion. For example, if one were to set the order variable to {2,4}
then the Heisenberg equation would be calculated for all cumulants up to order 2, were the equations
themselves can contain cumulants up to order 4. If one aims to use the Fricke method for truncating
discussed in section then the two numbers should be equal.

The second variable ops defines a list filled with all operator products of interest. In other
words, if one wants to calculate the cumulant equations for certain operator products, they should
be defined here. By default the momentum conserving operator products are defined here up to
fourth order, but one could change these or add more if desired. As was discussed in chapter [2| the
inclusion of certain mixture cumulants heavily depends on the specific model used to describe the
gas. This is why this variable is left completely open to user customization.

Note that the Non-Interacting Mixture.nb and Interacting Mixture.nb script differ mostly
in the default definition of the ops list. Specifically the Non-Interacting Mixture.nb contains
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only cumulants within the same component, which really makes it a more restrictive version of the
Interacting Mixture.nb script.

The recommended operation of the script then becomes to first draft a model of the gas of interest
with all assumptions. Then from these assumptions one can derive which cumulants can be set to
zero from the beginning. For example in a mixed Fermi gas without any external magnetic field,
one would expect the p mixture cumulant to be zero due to the absence of spin flipping. If one has
obtained a complete set of cumulants that are relevant to the theory, they can be entered into the
operator list ops and the corresponding equations can be calculated.

3.2.3 Workflow

Now that all variables and functions have been defined in the preamble, the script can start actual
computation. A full overview of the workflow which the script follows to calculate the cumulant
equations is shown in figure [3.1

Preamble Preamble

ops ops
. order ‘ order
Commutator Commutator

cuSimplify cuSimplify
3 s

Cluster Expansion Cluster Expansion
‘ cexpandb H cu ‘ ‘ cexpandf H cu ‘
s - 8 3
Condensed Bose gas Fermi gas

Fricke indexSimpli indexSimplify
approximation
cuSimplify cuSimplify
cuEquationFricke ‘ ‘ cuEquationBose ‘

(a) Bosons (b) Fermions

Figure 3.1: Schematic overview of the workflow used in the script. Black boxes represent subsections
of the script which should be read from top to bottom. Blue boxes represent results and variables,
red boxes represent custom functions used.

This figure shows a schematic representation of the global work flow of the entire script. Each step
(black box) will produce certain results saved in a variable, represented by a blue box. The results
are produced with the use of SNEG functions and custom functions from the cuFunctions.nb
library. Any custom functions used are shown with a red box. One notices that the work flow for
bosons and fermions is very similar, but diverges somewhat for the last step. This will be explained
in more detail later.
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The next part of the script after the preamble carries out the first actual computation, namely the
commutator of the operator products defined in variable "ops” with the Hamiltonian. This is then
the right side of the Heisenberg equation as defined in equation As seen in section [2.1.4 manual
simplification of these commutators becomes cumbersome for longer strings of operator products,
and such a process is prone to mistakes. This part of the script carries out the calculation and
simplification of the commutator automatically, solving the potential issues with manual evaluation.

To aid in troubleshooting, the single particle terms and interaction terms of the commutator are
calculated separately. The basic workings of this part of the code are relatively straightforward. For
each element in the operator list ops” the appropriate commutator is calculated and stored in a list
called ”ctot”. Here only the operator products are used which obey the order restriction. One might
wonder why a union function is required here for bosons. A quirk in the way SNEG is programmed
makes it somewhat difficult to determine the order (length) of an operator product as it is defined
by the nc[..] function. A simple evaluation of the product length using standard Mathematica
functions works for all but the first order product, which requires special treatment. Thus a union
function is used which makes sure also first order products are included in the commutators. For
fermions this problem is absent, since first order cumulants are automatically zero in a Fermi gas.

Note that at this point in the script we use the same Hamiltonian for both bosons and fermions
for calculating the commutators, even though in section |2.3.1]an altered Hamiltonian was introduced
for fermions. This choice was made to keep the start of the script as general as possible. Later on
in the script then the user can make the choice to introduce anti-symmetrised matrix elements if
this is desired. This functionality is explained further in section [3.4.1] Throughout the whole script
we notate V; - (k,p) as V[{k,p}, {7, 7}]. Also note that at this point we use a placeholder function
f[k] for the kinetic energy.

The list ctot now contains the right hand side of the Heisenberg equation for each operator
product defined in the preamble. Having this the full Heisenberg equation can easily be defined, and
the script can move on to the calculation of the cluster expansion. This is done using the custom
function cexpandb]..] for bosons or cexpandf]..] for fermions. Together with the cu[..] function
used for notation the full cluster expansion of each commutator is now stored in the variable ”cexp”.
The exact workings of the two cluster expand functions will be explained later in the next section.

In principal the calculation of the cumulant expansion is now finished, and all that remains is the
application of simplifying assumptions to shorten them. Before looking at the simplification steps
however, it is instructive to take a closer look at the functions used in the previous steps and how
they operate. This will be discussed in the next section.

3.3 Custom functions

The script contains several custom functions which either expand SNEG’s functionality or solve
issues that came up during writing. This section will give an overview of each function and explain
its workings in detail. All of these functions are stored in the library cuFunctions.nb, and thus it
is essential that this library is loaded whenever one works with this script.

3.3.1 Delta functions

As was shown algebraically in section[2.1.4] calculating the commutator gives a sum over the indices
containing multiple delta functions. The properties of the delta function then allow one to remove
some indices from the summation thus simplifying the final expression. In principle SNEG contains
a simplification function that can do this automatically, namely the sumSimplifyKD|..] function,
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which takes a sum as input and then simplifies all delta functions where possible. In addition to
this SNEG also contains other simplification functions. The most general one, sumSimplify][..],
simplifies sums in much the same way that the native simplification functions in Mathematica
operate, but with some additional rules for symbolic sums.

However several issues with the sumSimplifyKD]..] function were found whilst writing the
code. The largest issue discovered was SNEG’s inability to deal with delta functions containing
sums of indices. To illustrate this, let’s assume one wants to simplify a sum as

Z Ok-+q,plklq = Z Ok,p—qlklq = Z ap—qlq- (3.1)
k,q q

k,a

Expressions similar to those in equation often appear in equations, and thus it is important that
they be simplified correctly. The issue with SNEG arises when two dummy summation indices are
summed together inside a delta function. Here a choice has to be made to eliminate either k as done
above, or eliminate q. To force SNEG to make this choice one of the two indices must be isolated
inside the delta function, as is done in the first step in equation [3.1] It should be noted that SNEG
also encounters issues if the summation index inside the delta function has a minus sign in front.

The library file ”cuFunctions.nb” contains a function called deltaSwap]|..], which applies a
permutation to indices inside delta functions to obtain a form which is simplified properly by the
sumSimplifyKD[..] function. deltaSwap]|..] takes two arguments, where the first argument is the
delta function one aims to rewrite. The second argument is the list of wave vectors that may appear
as summation indices, which would by default be the sumwavevectors list defined in the preamble.
The basic operation of the deltaSwap|..] function is as follows.

Input: {KroneckerDelta[x,y], sumwavevectors}

For each element i in sumwavevectors
Solve x =y for i
If solution is found
x =i
y = solution
Break
Else
Break

Output: KroneckerDelta[x,y]

By this procedure all delta functions are written to a form where a summation vector is isolated.
Note that the actual Mathematica functions look quite different at first. This is because iterative
For statements don’t really exist in Mathematica in this form. The operation of the function is
essentially the same however, and this is a much cleaner way of writing it. For the remainder of this
chapter if we need to write code we will often write it in such ”pseudo-code” notation.

The deltaSwap|..] function is applied to an expression indirectly through a second parent func-
tion, called cuSimplify[..]. It also takes two arguments, the first one being the expression that one
aims to simplify. If one wishes to apply some assumption related to delta functions then a replace-
ment rule set can also be given as the second argument. This will be useful in the simplification
section. The cuSimplify[..] code contains three basic operations on delta functions, of which the
deltaSwap|..] function is one. Their effect is shown in figure
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sumSimplifyKD]J..]

Figure 3.2: Effect of all transformations in the cuSimplify[..] function. An example input is shown
in the top left, which is rewritten in three steps read from left to right. Each step represents a
distinct transformation, read from top to bottom. The final output is then shown in the bottom
right. We still represent results by blue boxes and functions/transformations by red boxes.

After these three transformations the sumSimplifyKD]J..] function can finally be applied for sum
simplification. Important to note is that this function is actually mapped over each term instead of
applied to the total expression directly. It was found that this simple restriction provides a significant
computation time decrease for long sums, which is advantageous for higher order calculations. This
may be due to the exponential increase in possible simplifying permutations Mathematica attempts
to apply when the sums contain many terms. By only simplifying each term individually this pitfall
is avoided. To properly apply the mapping cuSimplify|[..] contains a line which expands the total
sum into individual terms via the sumExpand]..] function in SNEG. Several steps in cuSimplify]..]
are applied twice, which cleans up all residual delta functions that could possibly appear after initial
runs. This is especially important for step 2 in figure [3:2}

3.3.2 Cluster expansion

Once the commutator has been calculated and simplified properly, the script starts computing the
cluster expansion of all expressions. This part of the script relies on a custom function written for
this purpose, called cexpandb]..]. This section will explain the operation of this function in detail.

The cexpandbl..] function takes an operator product defined by the SNEG function ncJ..] as
input. The function then computes the cluster expansion of the given operator product. This cluster
expansion is exactly equivalent to the one defined in equation 2:27]

Computing a cluster expansion involves the computation of all subsets of a given variable set.
It turns out however that the nc[..] function doesn’t easily lend itself to set manipulations, and
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thus the first thing the cexpandbl..] function does is putting all operators in the product into a
list, saved into a local variable B. Now we can use all the set manipulations built into Mathematica
to compute the cluster expansion. A schematic example of the code as applied to a triple operator
product is given in figure [3.3]

1 2 3 4 5 6
FoldPairList[ .
DeleteDuplicat
Permutations[B] Length[A]=3 TakeDrop[A, #]] ;Oe rte[m;lli ;:;Ss[ Product[subsetsA
IntegerPartitions| @ i ]
Permutations|..]] | | |Integerpartitions
P U ¢
-~ ~ T ] W{dy Al f s (a 1'& a )
A Tar - {ak,ak a } Gatal. [Haan.@a . R P N k “kiq
{ak ak’aq} q | i{{;ﬁi.;ﬁ}fg}{fﬂ}{a”- Hag } {8 agl), (ﬁ 1.& )c(a )
o ta A (3} @@y an. @y Hagh (@ aw . ",r al kel
(@ a8, Do e @ e aeagy, (@ G (aq)
‘191 {{d"). (4).(a))) 51 a1 (a A \Cs A \C
a” oA oa t 11,2}, deas ney . || €@ M@ agh (@, T) (dgd,)
{ak,aqak } {L11}} wayaaty, } o\ a vefa \C
Haan{atyy (@) (@) (a,)
B A Intfeg.er subSetsA subsetsA Output
Input partitions

Figure 3.3: Schematic representation of the cexpandb]..] function applied to a triple operator
product. Operation runs in steps from left to right. Within each step certain functions are applied
shown in a red box. The result is then shown in a blue box, with the name of the result given at
the bottom. Note that in the second and fourth step not all operator products were written and in
the fourth step indices were omitted to save space.

The function code first generates all permutations or orderings of the input set B and saves them
in set A. Then for each element in set A all possible partitions are computed. This is done by
calculating all possible integer partitions of the length of each permutation in A, and splitting every
permutation into subsets according to these integer partitions. We have now obtained a set (called
"subSetsA”) containing all possible partitions of all possible permutations of the input operator
set. Note that all partitions are appropriately grouped together. An example of such a partition
group in figure [3.3|is the group {{aa},{a'}}

This rather brute force method will generate many duplicate groups of partitions. To figure out
which terms appear multiple times, the Sort[..] function is applied to each partition in the list.
This sorts all operators inside the partitions into canonical order. Then all duplicates can be simply
deleted by the DeleteDuplicates|..] function. Now within each partition group we can multiply all
partitions, with the notation function cu[..] applied to each partition. After this all that remains
is a summation over all these products. The cluster expansion has now been calculated.

cexpandb]..] allows one to calculate the cluster expansion for a boson operator product. For
fermions however, one can not just apply the Sort[..] function to all partitions without applying
the commutation relations in equation Also for fermions all cumulants of uneven length
are automatically zero. Thus for fermions we use the function cexpandf]..], which slightly alters
cexpandb]..]. Specifically cexpandf]..] first sets all partitions in list subSetsA that contain a
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product of uneven operators to zero. We now continue along the same lines of the cexpandb]..]
function, also applying the Sort][..] function.

After deleting duplicates, every total partition group is compared to the original operator product
with the FindPermutation]..] function. This prints the cyclic permutation P required to bring the
original product into the order of the total partition group. The length of this cyclic permutation
(defined by Mathematica function Cycles]..]) can be related to the parity of the permutation by
the expression (—1)F»~! where Lp is the length of the cyclic permutation P. In the script then we
simply multiply the product within every partition group with this factor. Then we again sum all
partition groups to obtain the appropriate cumulant expansion.

The script supporting cexpandb|..] and cexpandf]..] simply extracts all operator products from
ctot into a list called products, gives these to cexpand]..] as an argument and then plugs the results
back into ctot with a replacement rule. This gives the full cluster expansion for each equation in a
list, referred to as "cexp”.

3.3.3 Index simplification

In this section we discuss the indexSimplify][..] function which was written to further simplify sums
in the last section of the script. Consider the following expression,

Z pT,p—kVT,‘r(k - b p) + Z pT,kVT,T(_kv p) (32)
k k

At first these two terms seem different, but they are actually equivalent. This is because the first
sum can be changed into the second by introducing a change of indices k — p — k. The first sum is
then exactly equal to the second, and the two terms can be combined. By this method significant
simplification of the final expression can be achieved.

The indexSimplify[..] function automates simplifications of this form. This function works
on a sum which contains a potential term multiplied with some other function, which is always a
cumulant. This cumulant function must then contain as an argument a summation index summed
with an operator index. In equation this function is p; p—k-.

The indexSimplify[..] function takes 4 arguments. The first argument is the sum one aims to
simplify, the second argument the summation index, the third argument the operator index and the
fourth argument the cumulant function. The operation of this function reads
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Input: sum expression x over indices y
summation index z
operator index w
cumulant function u

In u replace zt+w with f

If replacement succeeded
In x replace z with f-w
Break

In u replace —z+w with f

If replacement succeeded
In x replace z with —f4w
Break

In x replace f with z

Output: sum of expression x over indices y

The script first replaces all sums of an operator index and a summation index inside the cumulant
function with a placeholder f. It does this for the both the addition and subtraction of operator index
and summation index. After both of these replacements, the script checks whether the replacement
is successful, i.e. if a cumulant function with argument f exists inside the sum. If so all summation
indices are replaced by the appropriate solution of the summation. Then the script just replaces the
placeholder f by the summation index again, and the script finishes, printing the final sum.

To provide a more concrete example, consider the sum in equation [3.2] Here the summation
index is k and the added operator index is p, inside the cumulant function p. The function will
first attempt the replacement k + p — f inside p, which will fail. Thus the following If statement
will fail and the script attempts the replacement —k 4+ p — f which will succeed. This provides
the script with the information that this is the appropriate sum to replace, and the following If
statement will evaluate as true. Thus the summation index k inside the potential will be replaced
with —f + p. Then f will be replaced with k and the function is done.

To properly apply the indexSimplify[..] function it needs to be given the correct function
arguments. Thus it is mapped over an expression by a replacement rule of the following form.

For each sum of form V[..]x*n[.., utg,..]
over indices y

If g is not an element of sumwavevectors
&&

u is an element of sumwavevectors

Apply indexSimplify[..] to sum with
additional arguments {y,g,n}

We actually apply a set of such rules, which also contains equivalent expressions for negative sum-
mation vectors or conjugate cumulant functions. Via these rules the indexSimplify][..] function is
mapped to each sum containing a product of a cumulant function and a potential matrix element,
provided the cumulant function contains a summation index summed with an operator index. Thus
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it is important for the input to this replacement rule to be a fully expanded sum.

3.4 Simplifying the equations

In principal the calculation of the cumulant equations is now finished, and all that remains is the
application of simplifying assumptions to shorten them. The following sections discuss how these
simplifications are applied, starting with the boson scripts. Note that the boson script also allows
one to apply just the Fricke truncation method (referred to as the Fricke approximation) without
any further assumptions, as seen in figure [3:1a

3.4.1 Simplifying rulesets

In the previous parts of the script we obtained the rhs of the Heisenberg equation expanded into
cumulants. This is the most general way to write the cumulant equations, equivalent in form to
equation [2.30] Obviously if this is the form the user is interested in no further computations are
required. As discussed in chapter [2| however, the equations become much more useful under certain
assumptions. For bosons the most relevant assumption is the coherent state approximation, while
fermions allow simplifications through the antisymmetry of the matrix elements. We can thus apply
several transformations to the cumulant equations. The script carries out these transformations
through several rulesets, which will all be explained in this section.

Before discussing these rulesets however, let us consider the beginning of the ” Condensed Bose
gas” and ”Fermi gas” sections in the script. In section we defined some shorthand notation for
cumulants, which we would like to apply to the list cexp. It will later turn out to be useful to also
load all these different cumulant functions into a list, which will be called functions. Additionally
we define each function as numeric with some appropriate notation. For example for the ¢ cumulant
we write the following.

SetAttributes[¢), NumericFunction] ;
Format[¢[x__], TraditionalForm] := Subscript[¢, x];

At this point the notation used in the script in Mathematica notation differs slightly from the theory
section, mostly due to Mathematica’s difficulty in dealing with superscripts and subscripts within
its own notation. Table shows the Mathematica form and its equivalent TraditionalForm.

Mathematica Traditional || Mathematica | Traditional

Form Form Form Form

Viika}l, {r. o}l | Vio(k.q) Flk,q] 7%
k ) )

’l’b[ ] ,l/}k Q[k7k 7q] ]E,Qk;%}q

p k Pk W[k K’ ] {1,3}

klk Kk =<4 ’Ebkzl}q
1,2 Rk Kk’ »

T[k,q] T,jq } [kk’q] k.k' g

Table 3.2: Mathematica form and Traditional form for the cumulant functions.

To avoid the superscripts in notating the triplets and quadruplets different letters are used in Math-
ematica notation. The TraditionalForm however was kept as close to the notation in chapter [2| as
possible. Now we move on to the different rulesets that we define. Each ruleset is explained here in
the order in which they are defined in the script.
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Function rulesets

The two rulesets AssumpBosePsi and AssumpBoseFunc/AssumpFermiFunc replace all cu-
mulants with the appropriate functions that were defined in the previous section. In the coherent
state approximation we require all cumulants to conserve momentum. This condition can be fulfilled
by multiplying all expressions with certain delta functions that enforce the condition of momentum
conservation. As an example we replace select second and third order cumulants as follows.

(A7 kGo,q)° — k[7,k]*KroneckerDelta[k,—q]
xKroneckerDelta[T 0]

<€Li’k&%k/do7q> — T[k,k’,q] *KroneckerDelta[k,k’+q]
xKroneckerDelta [T ,v]*KroneckerDelta[v,0]

Equivalent replacement rules are defined for all other cumulant functions. Note that the above
ruleset appears in the boson script. As discussed in section we can no longer use shorthand
notation for the cumulant functions for fermions. Thus in the ruleset given above one would have
to write k[T,—k, K].

Also note that at this point the three versions of the script require different rulesets. For the single
component script the species index is absent, and thus no extra delta functions are necessary. In
the non-interacting mixture the index is there, but it is assumed that only cumulants with the same
species index are nonzero. In this case then, we require the replacement rules printed above, with
extra delta functions for the Greek index. The full interacting mixture equations then omits these
spcies delta functions again, though obviously the species indices still appear in k. We define the i
function separately from the rest of the cumulant functions due to the issues with Mathematica’s
Length|..] function which were discussed earlier. In the AssumpBoseFunc/AssumpFermiFunc

7L2 q2

rulesets we also replace the earlier defined placeholder f with the actual momentum eigenvalue =21-.

Delta function ruleset

When applying the function rulesets many new delta functions will appear in the expression. Some
of these delta functions only contain indices from the original operator products, i.e. those defined in
the opwavevectors list. Since by default the original operator products in list ops already conserve
momentum and these indices are assumed nonzero, all these delta functions automatically vanish.
This significantly simplifies the final expression, so here we define a ruleset that automatically sets
all delta functions that only contain indices in the opwavevectors list to zero. We call this ruleset
AssumpDelta. Note that in the single component and non-interacting mixtures scripts we can do
the same for the operator species saved in list opspecies.

Index ruleset

One issue that was observed with the output was the presence of many sums over different dummy
indices that could be easily combined into one total sum over the same index. As an example,
consider the following identity,

> VK p)ok+ > VK, p)ow =2 V(k,p)px. (3.3)
k k’ k

Expressions like the one on the lhs were often found in script results. To properly simplify such
expression we use a ruleset called AssumplIndex. This essentially rewrites each sum to a sum over

31



the same (ordered) set of dummy indices, automatically applying the simplification in equation
Here we again take advantage of the sets sumwavevectors and sumspecies, which shows why we
decided to define these indices separately in the preamble.

Further simplification

Next to the elementary shortening of equations described above we can apply a collection of sim-
plification rules that allow us to shorten the expression further. Specifically, at the start of chap-
ter [2] we assumed a symmetric interaction potential, and our problem is translationally invari-
ant. This allows us to apply some simplifying identities. To this end, we define rulesets called
AssumpBoseSimp/AssumpFermiSimp. In all scripts these rulesets contain numbers that label
different blocks. In the remainder of this section we will outline the simplifying rule belonging to
each block.

The blocks labeled (*1*) attempt to shorten the expression via the symmetry of the potential,
which holds for both bosons and fermions. This is done by replacing sums of matrix elements that
are actually equivalent by symmetry. In the code such a rule takes the following form.

For each expression of form
Vi{x,y}, {z,z}] + V[{w, 1} {z,2}]

If {X7Y} - 7{W71}
Replace expression with 2«V[{x,y},{z,z}]

Note that the second list in the argument of V contains the species indices. Obviously in the single
component script these indices are absent. Also note that for this rule to apply the species indices
must be the same. If they are different, we use the following ruleset.

For each function of form

Vi{x,y}, {z,w}]

If {z,w} is Not Ordered
Replace function with V[{-x,—y}, {w,z}]

Which sorts the species indices into canonical order, adding a minus sign to the wavevector indices
if a re-ordering is required. Again this rule is not needed for the single component script. By these
two rules the symmetry of the potential is properly applied to simplify the final expression.
Moving one to code block (*2*), we apply translational invariance and other symmetries to the
cumulant functions. Translational invariance dictates that for example p, _x = p, k for bosons and
fermions and TTllf T%2 for bosons. Furthermore due to commutation relations we have for

-q = frkq
example,
Bosons Fermions
Kr—k = Krk Rr—kk = —Krk,—k (3~4)
1,2 pl2 2,2 22
m.k,q TT,q,k QT,k,qﬁk/,q/ - Q'r,q,k,k’,q’

Ruleset (*2*) uses these properties to attempt to rewrite all cumulant functions to a canonical form,
where isolated indices are positive and indices are sorted via Sort[..]. By ensuring that as many
functions as possible are in this common form, the most effective simplification can be achieved.

A complication in applying translational invariance is that it can also be used to allow further
application of the symmetry of the potential. Consider the expression
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Z R k [VT,T (ka _p) + VT,T (k7 p)] ) (35)
k

which will often appear in the cumulant equations. For bosons this expression can be simplified by
mapping k — —k into the first term and applying £, _x = k. This would allow one to combine
the two matrix elements by applying potential symmetry. To allow the script to also simplify such
equations we use code block (*3%), which contains a rule that reads

For each expression of form
Vi{x,y}, {z.z}] + V[{w, 1} {z,2}]

In {w,1} replace sumwavevectors[[1]] with
—sumwavevectors|[1]]

If {X7Y} - _{Wvl} Or {X7y} = {Wal}
Replace expression with 2«V[{x,y},{z,z}]

which essentially expands the rules in codeblock (*2*) to also allow simplification through mapping of
negative summation indices. By default such a replacement is only attempted for the first summation
index, since this one appears in sums the most due to the AssumplIndex ruleset. At higher orders
other summation indices might also appear more often, and the user might choose to also apply this
rule for other indices in the list. Note that we do not include codeblock (*3*) for fermions, since
mapping like this is not directly allowed without introducing possible minus signs.

For fermions however, we have an additional codeblock (*4*), which uses similar methods to block
(*2*) to apply the antisymmetry of fermion matrix elements, which was explained in section m
This codeblock is optional, and if used denotes an antisymmetrized matrix element by superscript
A, consistent with the theory section.

We have one final code block left, labeled by the number (*5%). This block only exists in the
single component script, and allows for the optional application of a separable potential. The details
of a separable potential were explained in section If the user wishes to use this part of
the code it can simply be uncommented. Note that we also define a second simplification ruleset
AssumpBoseSimp2/AssumpFermiSimp2, which just carries out code blocks of the form (*1%),
(*3%) and (*4*) but with some arbitrary numeric factor in front of the potential.

3.4.2 Applying simplifications

The second part of the ”Condensed Bose gas” and "Fermi gas” sections in the script actually
applies all the results defined in the previous section in the appropriate order, and also applies other
simplifying steps. This section will summarize these final steps in the order that they are applied.

Breaking the hierarchy

We start with some lines of code that carry out the following operations.
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In cexp set s to zero
Apply AssumpBosePsi to cexp

In cexp set cach cumulant of Length > order[[2]]
to zero

Apply AssumpBoseFunc to cexp
Map cuSimplify[..] over cexp with argument AssumpDelta
Apply Assumplndex to cexp

First the index s is set to zero, which was the index in the first order cumulant inside the ops list.
This is consistent with applying the coherent state approximation. Thus in the fermion script this
step is absent. Next the AssumpBosePsi and AssumpBoseFunc rulesets are applied, while a
condition is given that any cumulants of order higher than the second value in the order list are set to
zero. This is then the full application of the Fricke method of breaking the hierarchy. Afterwards the
cuSimplify[..] function is mapped to each equation, which simplifies all delta functions originating
from momentum conservation. Note that here we also give cuSimplify[..] the ruleset AssumpDelta
as its second argument. Finally we also apply the AssumplIndex ruleset. Here it is convenient
that cuSimplify[..] has expanded the sum into individual terms, which ensures proper application
of Assumplndex.

Further sum simplification

Now that the first couple of rulesets have been applied, the script will carry out several simplifying
procedures on the resulting expressions. First we apply indexSimplify][..] - now not be confused
with Assumplndex - to the expression. The operation of this function was explained in section
Here it is was useful that cuSimplify[..] has expanded the sum. Note that this is the point
in the script where the replacement rules belonging to indexSimplify][..] are used.

At this point each individual sum is in its simplest form, and all sums can be collected. We then
prepare the expression for application of the further simplification rulesets. This part of the code
reads as follows.

For each sum of expression x over indices y

Collect terms in x relative to list
functions

Collect terms in x relative to list
Conjugate[functions]

Codeblocks (*17), (*3*) and (*4*) require that all potential terms are collected together as sums to
be the most effective. To rewrite the equations in such a form Mathematica’s Collect]..] function is
used, which collects all terms relative to the list functions. In other words, all variables in the list
functions are factored out, which groups the potential terms together. The simplification ruleset
can then be applied to maximum effect. To ensure the potential sums are shortened as far as possible
the two simplification rulesets are actually applied multiple times through a Nest[..] function. The
full simplified right hand side of the cumulant equations is now stored in the list rhsBose for bosons
or rhsFermi for fermions.
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Lhs cumulant equations

Up to this point, all calculations have been focused on the right hand side of the cumulant equations,
which is obviously the most important part for this script. To give a nicer output however, the script
also quickly calculates the left hand side of the equation. This is done by taking the original operator
product from the ops list, applying the appropriate cluster expansion function and applying all
relevant simplifying rulesets. We are now in a position to finally print the full cumulant equations,
which are saved in the lists cuEquationBose for bosons and cuEquationFermi for fermions. This
list is printed in Mathematica’s notation and TraditionalForm notation.

3.4.3 Fricke approximation

As discussed before, the boson scripts also give the user the option to just calculate the cumulant
equations by the Fricke approximation, without any additional simplifications. This is useful if
one is not interested in the coherent state approximation, and no assumption at all is made on
the nature of the cumulants. The script for the Fricke approximation follows the same lines as
the script for the condensed Bose gas, with several parts omitted. The only rulesets needed for
the Fricke approximation are the function rulesets, obviously without the delta functions, and the
AssumplIndex ruleset. If the user also wishes to include other rulesets here they can obviously be
copied over, but by default this part of script is very barebones on purpose. We note that using this
part of the script probably also means that one should alter the default starting operator products
in the ops list, which already implicitly assumed momentum conservation.

3.5 Potential issues

Even though the script will be thoroughly tested in the next chapter, this section will outline some
possible issues with the script that users may encounter. We note that these potential issues are
mainly related to the final simplification steps and not with the actual computation of the cumulant
equations, which is very stable in its operation.

3.5.1 Error codes

Use of the SNEG package with Mathematica version 12.0 gives some compatibility issues. In par-
ticular when calculating operator products Mathematica will print errors with, among others, the
LessEqual::nord2 function. As far as we could find these errors never affect the output, and thus
the preamble contains commands which turn these error messages off for the remainder of the script.
If a user is troubleshooting something with the script it is always advised to check whether these
errors may have something to do with it, although such a situation has not yet been found in working
with this script.

3.5.2 Fermion operators

As was stated before, the SNEG package automatically sorts operators into normal order when
applying the ncJ..] function. The user should take care of this when defining operators in the ops
list in the preamble of the script. If the user defines a fermion operator product that is not normal
ordered SNEG’s permutations could introduce a minus sign in front, which should be avoided. This
is because in this case the Length]..] function used in the commutator code no longer functions
correctly. The user can prevent the minus sign from appearing by simply entering operator products
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in their normal order. Since it can sometimes be unclear what Mathematica’s canonical order
actually is, it is advised to check the output of the ops list once and alter the ordering where
needed.

3.5.3 Simplifying rule sets

In the previous section we showed what different transformation rules we attempt to apply to the
cumulant equations to sort the final expression. Most of these were related to the potential matrix
elements which could often be combined by their symmetry. We also used rules that attempted to
sort arguments of the cumulant functions into canonical order and make their arguments positive if
possible. One major limitation of these procedures is that they become less and less reliable as the
order of the equations increases or more mixture cumulants are included. This is mostly because
the number of needed replacement rules grows as the number of indices grows. In the scripts that
accompany this report some basic replacement rules have been included which work quite well for
third order cumulants, but achieving effective simplification for fourth and higher order cumulants
would require many more rules.

3.5.4 Index simplify

One other major reason for the decrease in simplification effectiveness, especially for interacting
mixtures, is the indexSimplify[..] function, which attempted to rewrite sums inside cumulant
functions to a single summation index. In the way it is currently programmed however, this function
only works on specific sums containing one cumulant function multiplied with an interaction potential
matrix element. In the interacting mixture however, we often observe two cumulants multiplied
with a matrix element, which could both contain sums of indices. These sums are not grabbed by
the replacement rule accompanying indexSimplify][..], and are thus kept in their original form.
Obviously one could write a second replacement rule for indexSimplify[..] which also grabs such
products, but this would just make the issue reappear at even higher orders. Preferable one would
want to find a general replacement rule that could apply the indexSimplify|..] function correctly
to any sum, which may be an interesting point for someone looking to improve the script. We do
note that indexSimplify[..] itself is essentially general, and only the replacement rule needs to be
generalised.

It is comforting that the potential problems described above with the simplifying methods will
never lead to wrong output. They just mean that higher order/mixture equations are not always
written in as short a form as they could be written, and that some further simplification may have
to be done by hand. The calculation of the equations is not affected however, and the results are
always still correct.

3.5.5 Computation time

Since the calculation of cumulant equations naturally pushes one to achieve higher and higher orders,
it is instructive to consider the computation time of the script. Table [3.3| shows an overview of the
approximate computation time of the single component script.
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order | Computation time
{2,2} 55

{3,3} 27 s

{4,4} 11 m 10s

Table 3.3: Overview of computation times measured when running the single component script for
different values of the order list. These computation times were measured when running the script
on a Windows PC with an INTEL CORE i7-6700HQ cpu clocked at 2.60 gHz backed by 8 gB of
internal memory.

Here it is mostly interesting to consider the computation time increase when going to higher or-
ders. We observe that the difference between second and third order is minimal while the elapsed
time takes a major jump at fourth order. It was found that the bottleneck was mostly in the
sumSimplifyKD]J..] and sumExpand|..]/sumCollect|..] functions that were used when simplify-
ing the cumulant equations. An attempt was already made to make these functions more efficient
through the cuSimplify[..] function, which already gave a major decrease in computation time.
Further improvements however could make going to higher orders more convenient for the user.
Still, up to fourth order the time required is still very manageable and definitely much faster than
manual derivation of the equations.
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Chapter 4

Results and Discussion

This chapter will summarize and analyse some select results obtained from the scripts developed in
the previous chapter. We will observe that the cumulant equations become quite lengthy for higher
orders, which is why we often define tensors in this chapter which allow us to write the equations
in a more compact form. In this chapter the analysis will be mostly focused on the condensed Bose
gas, although we will also give a brief overview of fermion results.

We note again that whenever we refer to a non-interacting mixture in this chapter, we are strictly
talking about the cumulants. Interaction between species can still occur via the interaction potential.
This was explained in more detail in sections and

4.1 Boson Hartree-Fock Bogoliubov equations

4.1.1 Non-interacting mixture

Consider the second order equations for a condensed Bose gas in the coherent state approximation,
which can be used to describe the dynamics of two particle scattering processes in the gas. Let us
first consider the equations for a mixture in which the mixture cumulants are all set to zero. The
corresponding cumulant equations can then be calculated by the Non-Interacting Mixture.nb
script. The 1, ¢ equation was calculated to equal

L . k k
Zm/}'r,() = Z wT,O K:T,kVTT (07 k) + T/Jr,o{ Z pa,kva‘r(ga 5)
k k,o (41)

F Y oy = 3) + 3 Wool Vo 0,0) ),
k o

which also follows immediately from equation by applying the coherent state approximation
[2]. Comparing to the Gross Pitaevskii equation given in equation we see that the dynamics of
the condensate are now also influenced by the particles scattered into the condensate (k) and the
number of excited particles (p). To investigate the exact dynamics of these cumulants, we first define
the pairing field A, (p) and the Hartree-Fock Hamiltonian h,(p) to be consistent with literature as

A (p) = Vrr (P, 0)¥2 o+ > Vrr (P K)kir e, (4.2)
k
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Pp? 1 k-p k—p k+p k+p
h‘r(p) = +§Zpa,k<va,r(7 7)—’—‘/0',7'(7 7))
k,o

2m 2 72 2 7 2
I Sy RLANLE SET )
k (4.3)
+ g 2 Mool (Vorl 5. -3 + Ve 5. 5)
e Vrr (5, 5.

The pairing field contains the interaction between the excitation with momentum p and all other
excitations. The first term then represents all atoms in the condensate and the second term represent
pairing with excited pairs. We note here that summations over k like the one in equation (2]
exclude the k = 0 momentum mode, since this term has been effectively separated from the sum
via the coherent state approximation [14]. The Hartree-Fock Hamiltonian can be used to calculate
the so called Hartree-Fock energy of a certain excitation, which contains its kinetic energy and
an additional contribution from pairwise interactions [4]. Now we can write down the calculated
cumulant equations for the second order cumulants p, , and K, p in a compact form which reads

ihjrp = A (PR — Ar (D) Krp, (4.4)

W = 2hs (B)irp + Ar(P)(1+ 207.p). (4.5)

These three equations are collectively known as the Hartree-Fock Bogoliubov (HFB) equations, and
match those in the literature. In the cumulant equations it is often instructive to separate the
terms according to their function in the dynamics of the cumulants. In equations and we
can distinguish the homogeneous part of the equations from the inhomogeneous part. If one were
to consider a system which is initially completely condensed, the so called ”quench” scenario, then
p(t =0) = k(t =0) = 0. At this time then, only the inhomogeneous parts of the equations of motion
can provide the growth of the cumulant over time, and thus source the dynamics of the cumulant.
Because of this we will refer to the inhomogenous terms as the ”source” terms S. The k equation
can be rewritten to separate homogeneous and source terms as

ihfirp =20 (P)hrp + (14 207p) D Vrr (P, K)bir e
k (4.6)

+ (14 2prp) Ve r (P, 0)97 o,

where the first line contains all homogeneous terms and the second line all source terms. Given that
the x cumulant describes scattering of two particles outside the condensate, the source term must
be related to excitations of pairs to opposite momentum modes {p, —p}. This can be verified by
rewriting the source term as

Vir (p, O) [(1 + p'np) (1 + pmp)wz,o - Pi,pl/)no] . (4~7)
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This way of writing the equation was taken from ref [I4]. Observe that the source contains a term
of the form (1 + p,p), signifying that the creation of excitation pairs in a certain momentum state
is affected if that state is already occupied. Obviously we would not expect anything similar for
fermions, where states can only be occupied once. In essence such a term then describes the pairwise
interaction between bosons in the same state. We refer to this as Bose enhancement. [4].

Note that the dynamics of the p cumulant only contain a source term. This further signifies that
the number of excited atoms formed from the x source term is ”counted” by the p cumulant, which
represents the dynamics of the number operator [4].

4.1.2 Two-Body Schrodinger equation

One interesting property of the cumulant equations can be observed by neglecting all but the ho-
mogeneous terms in the x equation, giving

ihfirp =20 (P)hirp + (14 207p) Y Vrr (D, K)Fir ke (4.8)
k

Let us make the assumption that the dynamics of x are much faster than those of p and . That
means that we can treat these cumulants as approximately stationary. Let us then make the following
ansatz for the time dependence of the x cumulant.

HT’P = eEvt(b‘r,v(p)' (49)

Then equation [4.8] can be written as

Ey¢r.0(p) = 207 (P)$r0(P) + (14 2prp) D Vir (P K7 (K), (4.10)
k

which is an eigenvalue equation with eigenvalue E, and eigenfunction ¢, ,(p). Note that the factor
ih has been absorbed into F,,. This equation is similar in form to the two-body Schrédinger equation,
dubbed the Hyperbolic Wannier equation in literature [4]. If we remove all particles from the many
body system and go to vacuum, i.e. p and v both vanish, then the Hartree-Fock energy reduces to
the kinetic energy and the potential term is no longer Bose enhanced. In this limit then we find the
exact two body Schrédinger equation. Apparently the Hyperbolic Wannier equation generalizes the
Schrodinger equation to the presence of a macroscopically occupied condensate, altering both the
energy and the pairwise interaction terms. We can use this equation to examine the formation of
dimers from the condensate [4 [14].

4.1.3 Second order interacting mixtures

The single component HFB equations look very similar to equations [£.4] and obviously without
the extra index. More interesting to consider are the full mixture equations, in which we no longer
neglect mixture cumulants. These were calculated with the Interacting Mixture.nb script. In
this case the GP equation reads
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o 1 « k k
o = 3 [5000" Korac (Vour (0, -K) + Vorr (0.K) ) + 20000,00Vorr (51 5)
o,k
+ QwU,OpU,T,k (VU,T( 9 ) 2 ) + VU’T( 2 ’ 2 )i|

+ Z ‘w0,0|2V0',T (Oa O)wT,O'

Comparing to equation we see that the GP equation for an interacting mixture looks very
similar, with some additional summation over the species index. The second order equations however
diverge more significantly. The equation of motion for the p; , , cumulant for example gains several
additional homogeneous terms. To compactly write this EoM we define the mixture pairing field
A, +(p) and the homogeneous terms Q, ,(p) and 6, ,(p) as

A’y,o (p) = V’y,a (pv 0)1/%7,01/17,0 + Z K/’y,a,kv'y,a (pa k)v (412)
k
Q B P P . p—-k k-p
'y,o(p) - V'y,a(§a _§)¢7,0¢g,0 =+ Z V'y,U(Ta T)po,’y,kv (413>
k
B P P 2 p—k p—k
@"/,U(p) - V’YJ(E) E)W)O',O + Z V'y,o’(Ta T)po,a,k~ (414)

k

The tensors 2 and © seem to represent different types of excitation pairs. In the expression for Q2
we observe p, 4k Which suggests that this term represents scattering of an excitation of one species
with the condensate of a different species. This is further reinforced by the condensate term, which
contains contributions from both the o and - condensates. On the other hand the © term can be
interpreted as a density term, related to the number of excitations of the species ¢ inside the gas.
Now the equation of motion for p, ., p can be written as

ihpryp = Z [A%a(p)“;,r,p — A o(P) Fop

o

+ Q’y,a (p)pr,a,p - QU,T (p)pa,'y,p (415)

+ pryp{©q.0(P) — @T,g(p)}] :

We see that if interactions are introduced between the components the p dynamics are also influenced
by homogeneous terms. This is because in an interacting mixture the p cumulant does not just
represent the excitation density, but can also be filled by scattering processes between different
species, like in the  tensor. Note that the extra mixture terms immediately vanish if one sets all
mixture cumulants to zero, as is expected.

Next we consider the dynamics of the x cumulant in an interacting mixture. Again we first define
some notation in the form of the mixture Hartree-Fock Hamiltonian
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2 2
hor(®) = S 4 30 1 (0,0(0) + 00 (p). (416)

Now the equation of motion for the x cumulant was calculated to equal

ihky rp = 2hy, T(P)’i'v 7.p

4 Z [ P)korp + Qo (P)bqy,op (4.17)

+ Ay (p)po;r,p + Ao,r(p)[)a,w,p} +A, (p).

The first and third line contain terms that were already present in equation[.5] be it with a somewhat
altered Hartree-Fock Hamiltonian and some extra summation over the species index. The second
line however contains new terms, expressed in the earlier defined tensor Q.

4.2 Boson third order equations

4.2.1 Non-interacting mixture

The third order cumulant equations for a condensed Bose gas contain the dynamics of three particle
interactions, and are a natural extension of the HFB equations defined in the previous section. These
equations can be used to construct a generalized mean-field theory that is both self consistent and
includes the kinematics of condensate formation [I6]. Let us first consider the third order equations
for a non-interacting mixture, as calculated by the Non-Interacting Mixture.nb script. Once
more we emphasize that this name refers strictly to the cumulants, and interactions between species
can still occur via the potential. Again we start with the extension of the Gross-Pitaevski equation
including third order correlations,

k+q k- i}
Zh% Z V‘r T 9 q> q)Tfrllf a + Z 1pT,O KJ‘r,kVT,T(O7 _k)
k,q k

+¢TOZZ|:pakVUT )+kaVTT(12(,g) (418)
+ 11[}7',0 Z |’l/)<7,0| Va,‘f‘ (07 O)

We see that the third order scattering cumulant 7?2 is now also included in the dynamics of the
condensate. Now we again define some notation,

L) =Y [Ver (5 k= D)TE

- Kk k — Kk Kk (4.19)
+p p +P P 1,2
- V‘r‘r T a v a V‘r‘r 757)71’ :|
( (5 3 ) T V(5 2 ) o
Expressed in this notation, the equations of motion for the p and x cumulants were calculated to

equal
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ihprp = I (P)Yg — I (P) "o + Ar(P)KT p — Ar(P) Kirp, (4.20)

N k k k K\, 02
Zh/{ﬂp_zk:|:2¢7'0 TT( k+ 2) 7,k (2V77(2 +pP,— 2)+2VTT( +p7§)>TT,k,p

+ 2h-(p)hirp + Ar(p)(1 + 2f0‘r,p)} :
(4.21)

We see that the p and x cumulants are now also influenced by the 3rd order cumulants 72 and
793, which is to be expected since they all relate to the scattering of excited states. For example
since a T2 scattering event alters the occupancy of excited states one would expect its value to
alter the number cumulant p, which is proven by this equation. Interestingly however, three body
scattering events like the one represented by T3 do not feed the dynamics of p.

To obtain a completer picture of third order cumulant theory we require the equation of motion
for T2 and T93. To write these equations we follow conventions in literature and first define the
source terms S [4, [14]. These read

1,2 * P P PP
S7—7p7] - wT,OKT’l-}-pK’T,p (VT,T(I + 57 75) + VT,T(l 5 5))
x 1 1 1
+w7-,()/€‘r,p <V7' 7(5771) 2) + VT 7(2,P+ ) (PT I+p — Pr,1 ) (422)
p—-11l+p
+ VT,T( 9 3 9 ) [wT,OpT,l—&-p (1 + Pr.p + p‘r,l) - Q/JT,OPkPI} )

0,3 p P pp
S0 = tirp [ro (Ver (U4 B =) 4 Ver (0 2, 2)) (14 pra + prp)

4.23)
l+p 1-p I+p 1 (
VTT T Y a VTT T a Yo _1 ) : T:|'
 (Ver (52 50 4 Ve (52 5 (P = 1) )07 g
We then define the total source terms as
1,2
Stot,'r,p,l = ST Pl + S-r 1,p’ (424)
0,3 0,3 0,3 0,3
Stot‘r,pl S pl+S —-p—L1p ST]—] P (425>

If the expectation values were expanded according to Wicks theorem these would be the only terms
contained in the equations of motion, in other words these are all terms up to second order. In a
quenched Bose gas these terms source the initial growth of the third order cumulants as excited states
are populated. Note that in these source terms there is no summation over o, signifying that other
components in the gas do not impact the source. Next we define all homogeneous terms H. First
H'? was calculated, which we write with the following distinguished terms, following conventions
in ref [I4].
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K1 = (fT() fT(p+1))TTIj§,1, (4.26)

y2 _1+PT,p+PT,IZV (P*l Qk*I*P) 1,2

p,l T 9 2 ’ 2 7,k,—k+14+p
p—-k-1k-1-p
+(pros1 =) Y (Ve B — =—5—2) (4.27)
k
p-k—-1 -k+1+py, 1,
+ V(55— 5 )) kp?

Ph2 = A ()T

(4.28)

p—k k+2l+p 1,2 X
) [P
1 1 11 12 1%
+ (V‘r,‘r(k - 5) 75 - p) + VTﬂ'(k - 5’ 5 + p)) [T7—7k7l—k] :| }

Here a slightly altered Hartree-Fock Hamiltonian f.(p) is used that reads

p k—p

f( :27p+zpakv¢77 7T)

Z +p “k-p
+ pT,kVT,T(77 )
. 2 2 (4.29)

P P
+ Z |w0,0|2VU,T(_§7 _5)

2 P P
+ W)T,Ol VT,T(27 2)
For a non-interacting mixture we observe that the species index only plays a real role in this Hamil-
tonian, which is true in the second order equations as well. Specifically one observes that the first
line contains a term which counts the total particle density in a certain momentum mode through
Y o Pok- These terms are due to the interaction that still exists between different species through
the interaction potential V,, ;. The third term then also includes the influence of the o condensate
on the 7 species. We note that in the single component equivalent of these equations the above
alteration to the Hartree-Fock Hamiltonian is not necessary. In these equations both the doublets
and triplets contain exactly the same Hartree-Fock Hamiltonian.
All homogeneous terms for 712 can now be written compactly as

1,2 1,2 1,2 1,2 1,2
Htotf,pl T,p,l+KTlp+Vpl+V‘rlp pl+PTlp (430)

Here we see the first real example of the sizeable expressions which appear when calculating higher
order cumulant equations. This further motivates the creation of a script to automate the calculation
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and prevent possible mistakes. We have split the homogeneous terms into three distinct parts, namely
the kinetic term K12, the pairwise interaction term V12 and the pairing term 2P [14].

The kinetic terms contain the Hartree-Fock hamiltonian of the two incoming atoms with momenta
p and 1, and the outgoing particle with momentum p + 1. This is in line with the analysis of the 72
cumulant of section 2:2.2] where two incoming particles could either scatter with a third particle
or scatter with each other. Note that the second outgoing particle is scattered into the condensate
(k = 0), and thus does not appear in this equation.

In the V1?2 term we again observe the Bose enhancement term (1+p; ), signifying that excitation
to states is again influenced by the occupation of the state. Also in the V2 term we observe
interactions between the two incoming atoms with momenta p and 1 and the resultant outgoing
particle again. This can be seen by considering the arguments inside the interaction potential. In
the pairing part P12 we observe the pairing field defined earlier, for both incoming particles.

Having obtained H'2, we can also consider H%3. This was calculated to equal

21+ p 2k+p

0,3
'r p 1 — fT( ) p 1 + (1 + Pr,1 + pT,erl) Z VT,T(T) 2 )T-,—yp,kv (431)
k
0,3 0,3 0,3 0,3
Htot 7Pl T = HT,pl+HT —-p—-lp +H7—17p 1 (432)

We once more observe the Bose enhancement term (14 p, k) appearing, which alters the scattering to
populated excited states by 7% scattering events. Referring back to section T3 scattering
events were defined as scattering of three excitations into the condensate. For TB,’;?:,I the three
impeding particles have momenta p, 1 and —p —1. We observe that in H%3 the Hartree-Fock
energies of all scattered particles are included, just as was observed for H%2. For the third order
equations we have one remaining class of terms, which define the action of the triplets 752 and 793
on each other. We refer to these terms as the "back-action” B. Let us first again define the following
intermediate terms

1 03 1 0,3
7p.1 ZVTT +p,k+) rleplrin = QA(P‘H) T (4.33)

B3 — A1+ )T12

7,p,l 7,p,l
k p —-k+21+p k+p 1,2
+KTPZ|: ‘r‘r +1+§ §_§)+VT,T( 9 "o )}Tr,k,flfp (434)

k+2l1+p -k-p k+21+p k+p ,
+ Ve SR =) 4V (R S D) TR

Then we write the total back action terms as

Btlc;f ,7,P,1 = Bi12)1+B7—1,p7 (435)
0,3 0,3 0,3 0,3
BtotT,pl_B pl+BT—p 1,p B-rl—p 1 (436)

We see that the triplets influence each other’s dynamics partly through the pairing field of the
two impeding particles. We can now summarize all results of this section in the following compact
equations of motion.
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2 1,2 1,2 1,2
ZﬁTT,p,l = [Stot + Hygp + Btot]ﬂpJ ) (4.37)
0,3 0,3 0,3 0,3
Ty = [Side + Higy + Bige] o) - (4.38)

The single component equations were checked against ref [16] and found to match. This shows that,
at least up to third order, the script works as expected.

4.2.2 Three-body Schrodinger equation

In the HFB equation we could observe the two-body Schrédinger equation. One would thus also
expect to find the three-body Schrodinger equation somewhere in the third order equation. As
discussed before, the T3 cumulant describes scattering events between three particles. Let us take
its EoM and write only the homogeneous terms, assuming that the entire dynamics is controlled
only by three particle interactions. We define permutations

PP0u = Orijy POk = Oji. (4.39)

Given that the three particles in 793 have momenta p, 1 and —p — 1, we can then compactly write
the homogeneous equation as

ey f A+p 2k+ f
ZhTS,ﬁ,l = (1 + P+ P+) {fT(p)TSJS,I + (1 + prit p'r,PJrl) Z V’r,‘r(ip p)TO’J }
k

2 7 9 7,p,k
(4.40)
Again we use an ansatz for the dynamics of 73, which reads
T, ="', ,(p,1). (4.41)

We assume the dynamics of 773 are much faster than those of p and . Then we again formulate
an eigenvalue equation of the form

B, () = (14+ P+ P ) { £ (0) 0 (p.])

21+p 2k+p

(4.42)
+ (1 + Pr,1 + pT,p+l) Z VT,T(T7 92 )\I]T,V(p’ k)}’
k

with eigenvalue FE, and eigenfunction ¥, ,(p,1). This equation is again similar in form to the three
body Schrédinger equation for the three scattered particles [2I]. Again we observe that the energy of
the particles is altered to the Hartree-Fock energy, and the interaction term is again Bose enhanced

by the (1 + P_ + P+>(1 + px + prr) term. This eigenvalue equation can be used to examine the

dynamics of trimers inside the gas, and the influence of the condensate on the formation of such
trimers [14].
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4.2.3 Third order interacting mixtures

As was discussed in section one can formulate many different mixture cumulants in third order
cumulant theory. The script developed in this work is programmed in such a way that the user can
define what mixture cumulants to include by themselves, which allows for flexible application to
different theories on the dynamics of mixed Bose gases. This section will outline some results from
the Interacting Mixture.nb script when going up to third order.

The simplest result is obviously obtained by only allowing mixture cumulants of second order
to be nonzero, and neglecting all third order mixture cumulants. As expected, this would simply
extend the second order mixture equations with exactly the same triplets as the non-interacting
HFB equations calculated in section The results become more interesting if we also include a
third order mixture cumulant. Taking a look at equations and we see that the dynamics
of p and & in a non-interacting mixture are only influenced by both T2 andT?3. Note that the v
equation is not altered by the presence of mixture triplets. Let us then include the mixture cumulant

Th2 = (ala,a,)°. (4.43)
Here the momenta indices have been temporarily excluded for brevity. Physically, this cumulant
could be filled by the scattering of two - particles with the 7 condensate, exciting one 7 atom and
condensing both v excitations. Here we will assume that three particle scattering processes between
different species, e.g. T2, do not occur. Thus these cumulants can be kept in their original "non-
interacting” form. We now find the following resulting dynamics for p. The I tensors are altered

as

* —P p s
I’Y,U,T(p) = Z {wa,o [VU’T(T’ k — §)T’:737p—k7k
k

p—-k k+p
— Vo g )Twli,p,k} (4.44)
* -k—p p—k 1,2
- w'y,OV%U( ) ’ ) )Ta,o,p,k}'

Using this we can again formulate the third order equations for the mixture doublets as

ihpryp = Iﬂ’%’y(p) - Z I ,U,T(p)*
D | Brs OIS = Do (P) Korip + Vo (P)Prop = or (PIpom (4.45)

+ pT,’y,p{G"/,G (p) - er,a(p)}} )
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o k k
ihfyrp = Z Vy-(p— 9 5) |:wT7OT'\}:3,k,p + wW,OT:,f,hp]
k

#0000 (Ve (G k= )+ Vi (ke ]I
k

k k k
+ Vv,o(p Ty 5)} Tgl,f-,p,k

+ 6%7 ZM;,O [VU,T(p + g’ _5)
o,k

+ 2h’7,‘l’ (p)H’Y,T,p
37 [0 (Orp + Qo PV 0.5+ Do (P)orp + A (B) o] + Do (P):
(4.46)

Note that compared to the normal third order equations we observe that now several terms are
separated where before they could be combined. Interestingly we observe in the equation for x that
if one were to ignore the forming of excitation pairs within the same component entirely, for example
if one is only interested in the formation of opposite spin pairs, then several third order terms in the
K equation of motion vanish. This insight could obviously not be gained when only considering the
single component cumulants.

One could now also use the interacting mixture script to calculate the equation of motion for
T}ﬁ, which would give an extended version of equation in the case of interacting mixtures. We
do not analyse this equation here in detail but note that the extensions look very similar to those
for the singlets and doublets. For Tj? however we do not observe ”external” delta functions like
the ones we observe in the k equation.

4.3 Boson fourth order equations

Obviously now that we have considered second and third order cumulant equations the natural next
step is the fourth order cumulant theory. Here all quadruplets Q) are also included in the equations,
meaning that we now start including four particle interactions in the dynamics. Even though the
non-interacting mixture can also be used to calculate the fourth order equation, in this section we
will switch to the single component script for brevity. We note that even though the third order
equations are already of considerable length, the fourth order equations become much too long to
completely discuss in this work. This section will pick out some parts of the equations that are
interesting to discuss.

4.3.1 Singlets and doublets

Let us first explore the effect of the quadruplets @ on the singlet ¥ and doublets p and x. Inter-
estingly the equation of motion for v is not influenced by cumulants above third order, signifying
that equation is exact. The doublets however, are more interesting, and receive some extra
inhomogeneous terms. These additional terms read
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1 2,2 2p—-k—-q q-k 2,2 k-p+q k-p—q
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k+p+2q p+k k+p+2qg -p—-k
2,2

Qi [V SV b
. k+q+m)qu
Qp:ZQE:qukV' 5 ) (4.48)

We see that p is only influenced by @22, which can actually still represent a two body scattering
process with two impeding particles altering each others momentum. For Qi’zk,k, q the two incoming
particles have momenta p and q — p + k and the outgoing particles have momenta q and k. The
potential matrix element for such a scattering event reads

(p.a—p+kV|q k) (4.49)

which is equivalent to the one in the expression. Similarly the Q akpia cumulant is (partially) filled
by scattering between two particles of momenta k + q and p to two particles k and p + q, which
correctly corresponds to the matrix element

(k+a,p|V[k,p+aq) (4.50)

Note that in two particle Q%2 scattering processes no particles scatter to the condensate. However
Q%2 can also be filled by four particle scattering processes in which two particles are scattered into
the condensate. If we now take a look at equation we see that & is only influenced by Q3.
Specifically Q;:?c);,k represents a scattering process in which three particles of momenta p, k and q
impede and a single particle with momenta p + q + k leaves, which would imply that three particles
have been scattered to the condensate.

4.3.2 Four body Schrodinger equation

One could also continue with the fourth order dynamics of the triplets and quadruplets, which would
extend the equations in section to fourth order interactions. These equations however are very
long, and difficult to check because the literature on this topic is quite sparse. We can however at
least partially check the calculated equations by looking for the four body Schrédinger equation.
From both the second and third order equation the equivalent many-body Schrodinger equation
could be recovered, so one would expect the same to be true for the fourth order equations.

We consider the homogeneous dynamics of the Q%# cumulant, ensuring that we are only consid-
ering four body scattering. Let us first define the single component Hartree-Fock Hamiltonian.

k+p k+p k+p -k-p
h(p) Lv(ESR =B )
P P
+ itol? [V<5,5>+V<5,—5>.
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Again the homogenous equation is quite lengthy. For convenience of notation we define the following
tensor.

g+p 2k+g+p
2 ’ 2

21 +
Hg:z,l = (1 +m+ pg+1+p) Z V( )Q%,i),g' (4.52)
k

If we would like to write the homogeneous terms in a similar form as those for the third order equa-
tions we require some extra permutation operators. To save space we also define a total permutation
operator Pp.

P(4)Oijkl = Ouijk, P30k = Oinjis (4.53)

Py =1+PY 4+ pWp® 4 p.p@ 4 p® 4 p®) (4.54)

Note that P permutes the set {p,1,g, —g — 1 — p} whilst P®) permutes the set {p,1,g}. Now we
are in a position to write the homogeneous equation of motion for Q%*, which reads

ihQYs ) = h(p) + h(g) + h(D) + h(—g —1— p)QY:

0,3
+ PpHy -

(4.55)

We follow the same procedure as for the second and third order homogeneous equations. Let us
define an ansatz

QUt  =e"'D.,(p,g,)). (4.56)

Then we can again formulate equation as an eigenvalue problem. Here we assume that the
dynamics of Q%* are much faster than those of p and 9, and thus these are assumed stationary. We
also write out the H%3 tensor to obtain the most suggestive form of the equation.

E,®.,(p,g 1) = [h(p) +h(g) +h(1) +h(-g—1- p)} @, (p,g 1)

21+g+p 2k+g+p
+ Py [(1 + P+ Pgiiip) ZV( 5 ) 5 ) (4.57)
K

@, ., (k,p, g)} :

The eigenvalue equation obtained above is very similar in form to the four body Schrédinger equation.
The fact that this equation appears in the cumulant equations calculated by the script gives at least
some indication that the script operates correctly.

The Q%* cumulant is filled by scattering processes in which four particles of momenta p, g, land
—p — g — 1 scatter into the condensate. The first four terms of the eigenvalue equation contain the
Hartree-Fock energy of the four scattered particles, which reduce to the normal kinetic energy in
the vacuum limit {¢, p} — 0. For four particles one would expect the potential part to contain six
terms, since a set of 4 particles has (3) = 6 unique interacting pairs. Equation confirms this,
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as it contains 6 interaction terms via the permutation operator Pgy. We again observe that each
term is Bose enhanced, by a certain combination of p cumulants. As an example, consider the term
written out in full in equation with Bose enhancement factor (1 + o1+ pg+1+p). Writing out
the potential matrix element in full we obtain

> (L-g—-1-p|Vlk,~k—g—p), (4.58)
k

which shows that this term represents the interaction between the 1 and —1 — g — p particles. This
is consistent with the Bose enhancement factor, which alters the interaction term if these specific
momentum states are already occupied. This analysis can easily be extended to all other interaction
terms obtained by applying Pp, and shows that this equation is at least physically consistent. This
gives more credence to this expression and thus to the script used to calculate it. Note that the
interaction terms also reduce to the equivalent terms in the four body Schrédinger equation in the
vacuum limit.

4.4 Fermions

So far the analysis has been focused on the dynamics of condensed Bose gases, which were analysed
through the results of the scripts developed in chapter [3] However these script were also developed
to handle fermionic operators and can thus also be used to calculate the fermion equivalent of the
cumulant equations. This section will outline some results of the fermion scripts and discuss the
difference with the results for bosons. As stated earlier, the fermion analysis will not be as elaborate
as the one for bosons, which was the principal focus of this chapter. Still we can gain some interesting
insight into cumulant theory by a brief look at the fermion equivalents.

4.4.1 Hartree-Fock Bogoliubov equations

Just like for bosons, we begin with the second order equations for a non-interacting mixture, which
are also called the Hartree-Fock Bogoliubov (HFB) equations [I0]. Note that since all uneven
cumulants are automatically zero for fermions, there is no equation of motion for ). The HFB
equations then describe the dynamics of the p and x cumulants. Let us define a fermion pairing field
and Hartree-Fock Hamiltonian that read

1
Ar(p) =5 > ke kxVi (P, —k), (4.59)
k

h’p? p—-k k—-p
h-(p) = - Z Vir(m5— —5)prx
k

2m 2 2
(4.60)
1 k—p k—p p+k k+p
+2UZ[V‘”( 2 72 )+ Vo 2 72 )|
with which we can write the fermion HFB equations as
ihprp = Ar(P) Fr—pp — Ar(P)R7 _pp (4.61)
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ilifir,—p.p = 2he(P)r—pp + (20rp — 1) Ar(P). (4.62)

From a quick look at these equations one already observes several differences with the boson case.
For fermions there is no condensate and no 1 cumulant. Thus we observe that all terms that
previously involved v are now absent. We then find somewhat simpler expressions for the pairing
field and Hartree-Fock Hamiltonian. We also see in the equation for x that we no longer have the
Bose enhancement factor. In fact, the occupation of a state now alters the dynamics via a different
term (2pT’p - 1). Since p can be either 1 or 0, we see that the pairing field is added for an occupied
state and subtracted for an empty state. This could be a direct manifestation of the Pauli exclusion
principle.

Note that we were only able to apply the antisymmetric matrix element in the pairing field. If
one were to consider single component equations, i.e. without the Greek index, then we could have
also used antisymmetric elements in h,(p). Unfortunately for a mixture the terms are separated
into different sums. By a similar analysis as was conducted for bosons, one can again discover the
two body Schrédinger equation in the homogeneous equation of motion for x. Since this analysis is
so similar to the boson case, we will not repeat it here. The fermion HFB equations were checked
with ref [I0] and found to match.

4.4.2 Interacting fermi mixtures

An intrinsic property of fermions is that they have half integer spin. An electron for example has
either spin —i—% or —%. Cumulant theory provides the tools to study fermion gases with mixed spins,
which may interact via s-wave pairing [22]. This is one interesting application of the Interact-
ingMixture.nb script as applied to fermions. This section will summarize some results from this
script, again starting with the HFB equations for a multi component Fermi gas. As has now become
our standard procedure, we first define the fermion mixture pairing field together with the fermion
equivalents of the tensors Q2 and ©.

1
Avolp) =5 > VA (P K)o ke (4.63)
k
p—k k—p
Q’Yaﬂ(p) = Z Vw,a(?7 T)po,v,k7 (464)
k
p—-k p—k
@’Y,U(p) = Z V’y,a(Ta T)pa,n,k (465)
k

Then the full mixture equation of motion reads

ihpryp = Z |:A;k',o' (P)koy,—pp — A%U(P)“;,r,fp,p

g

+ Qo;r (p)po,’y,p - Q’y,a(p)pﬂr,o,p (466>

+ prp{ O () — ©:,5(p) ]
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We observe that the dynamics for p look very similar to the equivalent equation for bosons , be
it with some slight differences. As expected, the condensate is absent again. The k = 0 momentum
mode is treated as any other, and is just part of the regular summation. Interestingly we do
observe that the sign of the new mixture fermion equation is exactly flipped in comparison to the
additional terms in the boson equation. This is probably a straightforward result of the difference
in commutation relations. Let us next consider the mixture equation of motion for x and see if we
observe similar differences. We require the mixture Hartree-Fock Hamiltonian, now defined with the
fermion tensor © as

h2p2
hy-(P) =

2m

£ 2 (050(0) + 00 (0). (467

Then the kK EoM as calculated by the script reads

ihfiryp = 2hy 7 (P)rq.p

Z [ — Q5 (P)kro,—pp — QLo (P)Rr,o,—p.p (4.68)

+ A%o’ (p)po;r,p + Ao’,‘r(p)pa,v,p} - A’y,‘r (p)

So we again find an equation of very similar form to the boson equation however we note
that also for x the additional mixture terms expressed in the tensor {2 have had their sign changed
compared to the boson case. These sign changes could be a straightforward consequence of the
change in commutation relations between bosons and fermions.

4.4.3 Extending HFB equations

Recently there has been some interest in literature into also extending the fermion HFB equations to
include higher order cumulants [5]. Since for fermions the triplets are automatically zero, extending
the equations requires the inclusion of quadruplets. The HFB equations for a non-interacting mixture
are extended as follows

ihprp = Ar(P) Fr—pp — Ar(P)RT pp

2p—k—-q g-k o
+ Z |:VT,T( ’ )QT:q,k,p,k+q7p

e 2 2 (4.69)
v (AT T g
ihfir,—p,p = 2h-(P)Kr—p,p + (2P77p - 1)AT(P)
#30 [T (170)

k
2p—a-k g-k 71 13

2 > 9 )] Q'r:p,q,k
So we observe that the p and x cumulants are influenced by only Q%2 and Q'3 quadruplets respec-
tively, as was the case for bosons. These equations were checked against ref [5] and found to match,
again showing that the script works correctly.

- VT7T(
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Chapter 5

Conclusion

In this work a script was developed capable of calculating the cumulant equations for both bosons
and fermions and simplifying these equations to obtain a clear easily interpreted form. The scripts
developed in this work run on Mathematica in conjunction with the SNEG package for second
quantization. This allows the user to easily modify input and also gives cleaner output in normal
mathematical notation. This is very useful for the cumulant equations, which are often quite lengthy.
In addition to the functions contained within the SNEG package, several custom functions were
written. These functions allow for automatic calculation of different procedures in cumulant theory,
like the cluster expansion and index simplification. To widen the applicability of this work, this
report is actually accompanied by three Mathematica scripts, which can deal with different kinds of
Bose or Fermi mixtures. It was shown that the scripts operate up to fourth order within manageable
computation times.

The script first accepts customizable input of operator products, after which each operator prod-
uct is plugged into the right hand side of the Heisenberg equation. The script then first calculates
and simplifies the commutator for each product, after which the resulting expression are expanded
via the cluster expansion. The resulting equations are then simplified under customizable assump-
tions, after which they are combined with the left hand side of the Heisenberg equation to obtain
the full equations of motion.

The results of the script were analysed in detail for the condensed Bose gas, which adopts the
coherent state approximation. Analysis first focused on the ”non-interacting mixture”, in which all
mixture cumulants are set to zero. In such a gas then interactions between species only occur via
the interaction potential. It was shown that the second (Hartree-Fock Bogoliubov) and third order
equations match those in the relevant literature, which shows that at least within this domain the
script operates properly. The fourth order equations were also analysed, showing that within the
dynamics of 4 particles one could find the four body Schrédinger equation in a medium, which is
altered by the presence of the condensate. This gives a strong indication that the fourth order equa-
tions as calculated by the script are also correct, given that the appropriate many body Schrodinger
equation could also be found in second and third order cumulant theory.

Next to analysing the boson equations for a non-interacting mixture, which is easily transformed
to a single component gas, this report also analysed the full interacting mixture equations. In a full
interacting mixture all mixture cumulants are also taken into account. Here it was observed that
the new mixture scattering processes that could fill the p cumulants also spawned new terms in the
corresponding dynamics. These terms were summarized by defining new tensors, which grouped
those terms related to interspecies scattering. A short analysis was also conducted of the third order
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equations for an interacting mixture. It was shown that these can also influence the dynamics of
the doublets, depending on the specific mixture cumulants considered. It was also shown that the
dynamics of the x cumulant could be shortened significantly if one assumes that only excitation
pairs of different species exist. This can for example be applied to study the dynamics of opposite
spin pairs, which are often observed in nature. Further analysis of mixture cumulants can also easily
be conducted using the scripts developed here, due to the customizability of the code.

This work also conducted a short summary of the equivalent fermion results, including second
order interacting mixtures. Here it was observed that the fermion equations for interacting mixtures
were extended similarly as those for bosons, although sometimes with a sign change. Also expected
differences like the absence of a condensate were all confirmed by the script. The second and fourth
order fermion equations for the doublets were calculated for a non-interacting mixture and found to
match with literature, thus proving the effectiveness of the script also in this area.

Due to the high customizability of the script it would take much more time to outline all the
results one could obtain with it. The scripts developed in this work aim to serve as a basic frame-
work with which a user can perform calculations within cumulant theory and introduce their own
assumptions and approximations. This is facilitated by the use of customizable rule sets and input,
allowing the script to be quickly adapted to different many body theories. If one were looking to
improve the script we advise an extra consideration of the simplification functions, especially those
for index simplification. If they could be applied more generally and be more effective with the
interacting mixture cumulants the equations could be printed in a shorter form. Also if one were to
go above fourth order it could be useful to try and streamline some functions to be more efficient,
decreasing computation time. These are just matters of convenience though, and do not impact the
correctness of the results. The central initial goal of the script, automating the process of calculating
the cumulant equations for both bosons and fermions, has already been achieved.
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