JEULYNX Installation Guide

Djurre van der Wal

May 2023

1 Architecture

We developed our software framework, JEULYNX’ (i.e. “Java-EULYNX”), in Java, a popular object-
oriented programming language. We often abbreviate the name to ‘jIx’ or ‘JLX .

As is standard for Java software, JEULYNX is executed in a Java Runtime Environment. More unusual
is that we use Java also for inputting EULYNX diagrams. This means that EULYNX diagrams can be
created/edited with the same Java development tools that we use for the functional features of JEULYNX. In
the workshop, we use Eclipse IDE as the development tool, but any other contemporary Java development
tool could be used instead.

Below, we give an overview of the architecture of the JEULYNX software:

JEULYNX code base

|
| |
| | EULYNX diagrams JLX libraries : d
«proauces»
: |p% mCRL2 model
|
|

«edited with»

Eclipse (or similar) «executes on»

«runs on»

Java Development Kit (JDK) |

Java Runtime Environment (JRE) l

The Eclipse IDE requires a Java Development Kit (JDK) to run. A JDK is accompanied by a Java Runtime
Environment (JRE), on which Java (read: JEULYNX) code can be executed. Among several other functions,
JEULYNX can translate EULYNX diagrams into an mCRL2 model.

2 Software setup

To get started with JEULYNX, three pieces of software must be set up:
1. Eclipse (or similar);
2. the Java Development Kit (which actually comes automatically with Eclipse); and

3. the JEULYNX code base.

2.1 [Installing Eclipse
Eclipse installers exist (see[2.1.1), but portable Eclipse files are also available (see[2.1.2).

2.1.1 Eclipse installer

1. Gotohttps://www.eclipse.org/downloads/|and download the Eclipse installer:

The Eclipse Installer 2023-03 R now includes a JRE for mac0S, Windows

and Linux.

Get Eclipse IDE 2023-03

Install your favorite desktop IDE packages.

2. Run the installer. Eclipse can be used for different purposes, which you must specify during instal-
lation. Choose the ‘Eclipse IDE for Java Developers’ option.

A few further comments:

» The installer will ask you to give certain permissions and to trust certain resources. You will
need to take these steps.

* The installer may comment that the process is “taking longer than usual”. In our experience,
no action is needed when this happens.

Seehttps://www.eclipse.org/downloads/packages/installer for more detailed
steps.

2.1.2 Portable Eclipse files

1. Gotohttps://www.eclipse.org/downloads/packages:

Eclipse IDE 2023-03 R Packages

Eclipse IDE for Java Developers

P Windows x86_64
'*ﬁ 306 MB 130,731 DOWNLOADS -t: macOS x86_64 | AArché4
The essential tools for any Java developer, including a Java IDE, a Git client, XML Linux X86—64 ‘ AArchg4

Editor, Maven and Gradle integration

https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/packages/installer
https://www.eclipse.org/downloads/packages

2. Locate the ‘Eclipse for Java developers’ item. Click the appropriate link on the right side. This
brings you to a site similar to

Download from: France - CNRS IBCP (https)
File: SHA-512

>> Select Another Mirror

3. Click the link to download the archive to a location of your choice.
4. Extract the archive to a location of your choice.

5. The extracted contents of the archive should contain a folder named ‘eclipse’, which should contain
some type of executable (‘eclipse.exe’ on Windows). Double-click this executable to launch Eclipse.

2.2 Importing JEULYNX

1. Start Eclipse. You should see the launcher window:

& Fclipse IDE Launcher X

Select a directory as workspace

Eclipse IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: | Set your preferred directory for Java projects here v ‘ l Browse...

] Use this as the default and do not ask again

» Recent Workspaces

Launch Cancel

Choose the directory in which you want to place the files for Java projects (i.e. the JEULYNX code
base).

2. Click ‘Launch’. After Eclipse has loaded, you should see a window similar to

Q g &

Window Help
1 - - #
A AE=»

>

: _waorkspace - Eclipse IDE
Eile Edit MNavigate Search Project Run

milh g B0~ Q-G =y~ Bin
2 Welcome %

EC|IpSE Welcome to the Eclipse IDE for Java Developers

Get an overview of the features

Review the IDE's most fiercely contested

preferences
Go through tutorials

A guided walkthrough to create the
famous Hello World in Eclipse
Try out the samples

Create a new Java Eclipse project
Find out what is new

O Always show Welcome at start up W

>

Checkout Eclipse projects hosted in a Git

repository

The main area of the windows presents links to several useful resources. Ignore these for now.

3. Click the cross symbol next to “Welcome’ at the top of the main area. You should see an empty

workspace:
S _workspace - Eclipse IDE - a X
File Edit Source Refactor Navigate Search Project Run Window Help
milRg HFrO " QL GBI v Diwilvi v Oy a &
[£ Package Explorer x = a8 = B 3= Outline x = 8
S & There is no active editor
There are no projects in your that provides an outline.
workspace.
To add a project:
v § =8

2 (Create 2 Java project |
% Create a Maven project
[2] Problems * @ Javadoc [& Declaration
Resource

[Create a project..
2 Import projects... 0 items
Description -

The window shows the ‘Package Explorer’ view on the left. Because you have no Java projects yet,

it is currently empty.

4. Click the ‘Create a Java project’ action to add a project. A window for creating a new project pops
up:

S New Java Project (] X
~ Create a Java Project —F
Create a Java project in the workspace or in an external location. L y

Project name: JIx

Use default location

D:\eclipse\java-2023-03_workspace\jlx Browse...
JRE
(D) Use an execution environment JRE: JavaSE-19
(O Use a project specific JRE: jdk-20
© Use default JRE jdk-20" and workspace compiler preferences Configure JREs...

Project layout
(0 Use project folder as root for sources and class files

© Create separate folders for sources and class files Configure default...

Working sets
[Add project to working sets New...

Select...

Module

|[:] Create module-info,java file

Generate comments

@' < Back MNext > Cancel

Set the name of the new project; set the Java Runtime Engine (the third option typically works, but
not always); and disable the automatic creation of a module file.

5. Click ‘Finish’. You should see the following window:

% _workspace - Eclipse IDE
File [Edit MNavigate Search Project Run Window Help
OrEE Ot ~-0~ Q- Q- H# G~ ®F il

vy Bt oy D |2

[# Package Explorer x = o
S &
v = jix
> B JRE System Library [jdk-20]
& src

- m} X
Q g
5= Outline x = 08

There is no active editor
that provides an outline,

[2 Problems X @ Javadoc [E Declaration Y § =8
0items
Description - Resource

6. Right-click the ‘src’ package in the new project, and then left-click the ‘Import...” option in the
context menu:

& _workspace - Eclipse IDE - [m} X
File Edit Source Refactor Mavigate Search Project Run Window Help
I En:;;s.vﬁvaQvE?Qquv,v - X ¥ - - |4 Q EH%J
[% Package Explorer x = B = B B Qutline % = B
= There is no active editor
v Bl that provides an outline.
> Bh JRE System Library [jdk-20] New >

1=

Open in New Window

Open Type Hierarchy F4
Show In Alt+Shift+W >
Show in Local Terminal >

B Copy Cirl+C

55 Copy Qualified Name

Paste Ctrl+V

® Delete Delete
Build Path > T Bl =
Source Alt+Shift+5 >
Refactor Alt+Shift+T > Resource

2.

i Export..

" Refresh F5
Assign Working Sets...

@ Coverage As >

© RunAs B

4 Debug As >
Restore from Local History...
TE‘Em b N

src - jix Compare With > 0

Configure >

5

7. Choose to import resources from an ‘Archive File’, and then click ‘Next’:

. ‘S Import O X

Select

Import resources from an archive file into an existing project.

Select an import wizard:
type filter text

v = General
1.[8 Avchive ie]
=% Existing Projects into Workspace
(4 File System
[Z1 Preferences
) Projects from Folder or Archive
> & Git
» = Gradle
> = Install

@ < Back 2‘ Finish Cancel

8. Locate the archive from the ‘jlx’ repository, namely ‘jlx.zip’, and click ‘Finish’:

% Import] x
Archive file @
Import the contents of an archive file in zip or tar format from the local file system. A
1
L.
From archive file: | D:\downloads\jlx.zip V| Browse... |
> B/
Filter Types... Select All Deselect All
Into folder: jlx/src Browse...
[] Overwrite existing resources without warning
-
L.
@ < Back Next = Finish | Cancel

T —

9. Check that there are no errors in the ‘Problems’ panel at the bottom (it is OK if there are warnings).
If there are errors, please contact us:

S _workspace - Eclipse IDE - [m} X
Eile Edit Navigate Search Project Run Window Help
mRd Bt v - Q- Q- B O @iy Gy D[R aQ iglg
f# Package Explorer x & 8§ =0 = B 5= QOutline x = 8
v B jix There is no active editor
> =4 JRE System Library [jdk-20] that provides an outline.
v 4® src
> i jlxasal
> # jlx.asal.controlflow
> i jlxasal]
> # jlxasal.ops
> # jlx.asal.parsing §) =
. 8 jlcasal,parsing.api I#] Problems = @ Javadoc [Declaration v i o
. B - 0 errors, 38 warnings, 0 others
> 8 jlx.asal.rewrite L = g] -
> # jlxasalvars Description
> i jlxbehave v & Warnings (38 items) I
> [jlxbehave proto < The import jlx.asal.jJInt is never used
> jlxbehave.proto.gui - The import jlx.asal.jJInt is never used
> 8 jlxbehavestable = The import jlx.behave.proto.gui is never used
> jlxblocks.ibd » The import jlx.printing is never used
s 8 jlcblocks.ibd? - The import jlx.printing is never used

B S Ny

3 JEULYNX code base overview

3.1 Packages

Java code is organized with packages. Packages are essentially directories: they can contain other packages,
and/or files with Java code (i.e. files ending with ‘.java’).

Packages are explored in Eclipse with the ‘Package Explorer’ (on the left-hand side). By default, they are
displayed as “flat”, meaning that the name of a package is combined with the name of its parent packages.
For example, ‘jlx.asal’ refers to the ‘asal’ package, which is contained by the ‘jIx’ package.

Perhaps you prefer an “hierarchical” view of the packages. You can change these as depicted below:

S _workspace - Eclipse IDE - [m] X
File Edit Source Refactor Navigate Search Project Run Window Help
- SRR R R AR N R R R R S I Q x|
[# Package Explorer x =3 i: 8 = B = outline % = B
v i jix Top Level Elements D There is no active editor
> =4 JRE System Library [jdk-20] i that provides an outline.
v 3 src Select Working Set...
_:‘ # jlxasal Deselect Working Set
> # jlx.asal.controlflow
& j_lx.asal.] ©“ 1 Window Working Set
> jlx.asal.ops
» # jlx.asal.parsin 7 Filters...
: ? ’ l ration v 8 =8

» f# jlx.asal.parsing.api

s @ jlxesalrewrile PA[PacogePresentation] JESHAn:

s jlxasalvars ~ Show 'Referenced Libraries’ Node 3

> & jixbehave &, Link with Editor ;
> # jlx.behaveproto . . . Jer use
> # jlxbehave.proto.gui = The import jlx.asal.jJInt is never used
» f# jlxbehavestable = The import jlx.behave.proto.gui is never used
s jlxblocksibd1 = The import jlx.printing is never used
5 @ jlxblocksibd2 < The import jlx.printing is never used
R R B e Te e
src - Jix o

10

In the hierarchical view, it becomes more clear that the JEULYNX code base is distributed over two root
packages, ‘jlx’ and ‘models’. The ‘jIx’ root package contains the functional features of the JEULYNX
software. The ‘models’ root package contains the diagrams of various EULYNX specifications (albeit in
textual form).

f# Package Explorer x =30 =
v = lx
> B JRE System Library [jdi-20]
v i src
v i jix
» Ht asal
> & behave
> B blocks
> # common
> # models
» i printing
> Ht scenario
> i utils
[& models |
» B adjacent
> B generic
> H lcvix0
> 8 Ix
> # pendeltrain
> i point
> i scp
> H testing
> testing2
> 8 testing3
> H testing4

Among others, ‘models’ contains the running example from a workshop, namely in the ‘pendeltrain.j’
sub-package:

v i models.pendeltrainj
> M _Runjava
> [4] Infrastructure_SR.java
>[4 Infrastructure_STD java
>[I PendelTrain_SR,java
> [SignalColor.java
> [Train_SRjava
> [Train_STD,java
> [TrainPos.java

11

3.2 EULYNX diagram files
Open the file ‘models.pendeltrain.j.Train_SR.java’:
Train_SRjava x

1 package models.pendeltrain.j;
5

import jlx.asal.j.™*;
4dimport jlx.blocks.ibdl.*;

Gpublic class Train SR {

7 public static class Block extends TypelIBD {

8 public final InPort<JPulse> Tl arrival = new InPort<>();

c public final CutPort<JBool> D2 moving = new OutPort<>();
10 public final OutPort<TrainPos> D3 _pos = new OutPort<>();
11 public final InPort<SignalColor> D4 signall = new InPort<>();
12 public final InPort<SignalColor> D5 signal2 = new InPort<>();

It captures one of the internal block diagrams from the running example. Consider:

public class Train SR {

ta

N 1
Iffjﬁblpublic static class Block extends TypelIBD {
_,J

ublocks & |y,

Train
» | T1_arrival: Pulse D3 pos: TrainPos | »

/ % D2 :Vlng Boolean D4_signall: SignalColor

d / D5_signal2: SignalCalor

/ |c
‘/é. A

public final InPort<JPulse> Tl arrival = new InPort<>();

We use a class to capture the diagram “frame” (see a), and we use a nested class to capture the block inside
of the diagram (see b). We use class fields to capture input ports and output ports. The name of the port is
the same as the name of the class field (see c); the direction of the port is indicated by ‘InPort’ or ‘OutPort’
(see d); and the type of the port is the type parameter of ‘InPort’ or ‘OutPort’ (see e).

12

Open the file ‘models.pendeltrain.j.Infrastructure_SR.java’:

[9] Infrastructure_SRjava x
1 package models.pendeltrain.j;
5
Jimport jlx.asal.j.*;
4 import jlx.blocks.ibdl.*;

tpublic class Infrastructure SR {

public static class Block extends TypelIBD {

public final TrainPos oldTrainPos = new TrainPos();
c public final InPort<TrainPos> Dl trainPos = new InPort<>();
10 public final OutPort<SignalColor> D2 signall = new OutPort<>();
11 public final OutPort<SignalColor> D3 signal2 = new OutPort<>();
12 public final InPort<JPulse> T4_breakdown = new InPort<>();
13 public final InPort<JPulse> TS5 repair = new InPort<>();

It includes a class field that represents a property, ‘oldTrainPos’, in addition to class fields that represent
input and output ports:

public final TrainPos oldTrainPos = new TrainPos();
®,

Infrastructure SR)

™~

-

b wblocks
d. * Infrastructure

-oldTrainPos: TrainPos

» [D1_trainPos: TrainPos T4 _breakdown: Pulse | «
D2_signall: SignalColor T5_repair: Pulse | -

D3_signal2: SignalColor

The name of the class field is the same as the name of the property (see a). The type of the class field is the
same as the type of the property (see b). The accessibility of the property (meaning that ‘oldTrainPos’ is
only available to the instance of ‘Infrastructure’ that owns it) is not captured.

13

Open the file ‘models.pendeltrain.j.PendelTrain_SR.java’:

[3] PendelTrain_SR java
1package models.pendeltrain.j;
5
3import jlx.blocks.ibd2.*;

public class PendelTrain SR {
public static class Block extends Type2IBD {
public final Train SR.Block train = new Train SR.Block():
g public final Infrastructure SR.Block infrastructure = new Infrastructure SR.Block();

S T IS

BOverride

public void connectFlows() {
train.D3 pos.connect(infrastructure.Dl_trainPos);
train.D4 signall.connect(infrastructure.D2 signall);
train.D5_signal2.connect (infrastructure.D3_signal2);

The file captures from the running example an internal block diagram that has aggregate parts (see a and
b) that are connected by flows (see c):

public final Train SR.Block train = new Train SR.Block();
public final Infrastructure SR.Block infrastructure = new Infrastructure SR.Block();

Infrastructure_SR J
/ & /

/) oot /b.
/ /

. > .
winstancen winstancen
train::Train infrastructure:: Infrastructure
D3 pos [» | D1_trainPos
D4 _signall D2_signall
D& _signal2 D3_signal2

; / T
/
@override c.
public wvoid connectFlows() |
train.D3 pos.connect (infrastructure.Dl trainPos);
train.D4 signall.connect (infrastructure.D2 signall);
train.D5 signal2.connect (infrastructure.D3 signall);

14

Open the file ‘models.pendeltrain.j.Train_STD.java’. When restricted to two of the nested classes in the
file, namely ‘AT_S1° and ‘MOVING_I’, it looks like:

[4] Train_STD.java x
1 package models.pendeltrain.j;

“import jlx.asal.j.*;
import jlx.behave.*;

ol LD [

public class Train STD extends Train SR.Block implements StateMachine {
public class Initiall extends InitialState {[]

public class AT S1 extends State {
@override
public LocalTransition onEntry() {
return new LocalTransition(
entry(assign(D2 moving, JBool.FALSE), assign(D3 pos, TrainPos.__ 1))
)
}

@override
public Outgoing[] getoutgoing() {
return new Outgoingl] {
new Outgoing (MOVING 1.class, when(eq(D4 signall, SignalColor.GREEN)))
}i

}
public class AT _S2 extends State {[]

public class MOVING 1 extends State {
Boverride B
public LocalTransition onEntry() {
return new LocalTransition(entry(assign(D2 moving, JBool.IRUE)));

}

@override
public Outgoing[] getoutgoing() {
return new Outgoingl] {
new Outgoing (AT S2.class, when(T1 arrival))

}i
}

public class MOVING 2 extends State {[]

T4|

The outer class, “Train_STD’, represents a state machine diagrams. We can tell that it is a state machine
diagram because it implements ‘StateMachine’ (see line 6). It extends ‘Train_.SR.Block’, the class that
represents the ‘“Train’ block in the file ‘models.pendeltrain.j.Train_SR.java’. This gives the state machine
diagram access to the properties, operations, and ports that ‘Train_SR.Block’ defines.

Each class represents a state (or pseudo-state, in case of ‘Initial0’). The super-class of a class denotes the
type of the state that the class represents (e.g. ‘State’ and ‘InitialState’). Classes can be organized in a
hierarchy, just like states.

Behaviors are attached to states with methods. For example, ‘onEntry’ methods define the entry behavior
of a state; and ‘getOutgoing’ methods define the transitions (including behavior) that leave a state.

15

The file above captures one of the state machine diagrams from the running example. Below, we map two
code fragments back to that diagram:

Roverride
public LocalTransition onEntry () |
return new LocalTransition(
entry(
assign (D2 moving, JBool.FALSE),
assign(D3 pos, TrainPos._ 1)

t a.

AT St
U Entry / D2_moving := FALSE; D3_pos = 1; U

when(T1_arrival) / when(D4_signall == GREEN) /

(MOVING_2 N (MOVING_1)

LEntry /D2_moving := TRUE; J LEntry /D2_moving := TRUE;

when(D5_signal2 == GREEN) / when(T1_arrival) /
(AT_S2 7y
L Entry / D2_moving := FALSE; D3_pos = 2;) b

Boverride
public Cutgoing[] getOutgoing() {
return new Qutgoingl[] {
new Outgoing (AT 52.class, when(Tl arrival))

}:

The entry behavior of the ‘AT_S1’ state is captured with an ‘onEntry’ method (see a); and the transition
from the ‘MOVING_1" state to the ‘AT_S2’ state is captured with an ‘getOutgoing’ method (see b).

16

3.3 __Run.java files

In JEULYNX software, diagrams must be combined in a separate file. Below, we find ‘models.pendeltrain.j.__Run.java’,
which combines the diagrams of the running example:

[_Runjava x
1 package models.pendeltrain.j;
2
3= import jlx.behave.proto.gui.DecaFourSimulatorGUI;[]
public eclass Run {
public static void main(Stringl[] args) throws ReflectionException {
Model m = new Model();
m.add ("pendelj", new PendelTrain SR.Block());

m.add ("train", new Train STD()):
m.add ("infrastructure", new Infrastructure STD());

UnifyingBlock ub = new UnifyingBlock("pendeltrain", m, false, false);
new MCRLZPrinter (ub, new PrintingOptions()) .print&ndPop ("pendeltrain™);

new DecaFourSimulatorGUI (ub.sms4);

We give some brief descriptions below:

* Line 12 creates a ‘Model’ entity, which manages a collection of diagrams.

e Line 13 adds the ‘PendelTrain_SR’ diagram to the ‘Model’ entity. Indirectly, the ‘Train_SR’ and
‘Infrastructure_SR’ diagrams are also added.

* Line 14 and 15 add the state machine diagrams, “Train_STD’ and ‘Infrastructure_STD’, respectively.
* Line 17 transforms the diagrams that are now part of the ‘Model’ entity into an intermediate format.
* Line 19 generates an mCRL2 file from the intermediate format that is created in line 17.

e Line 21 starts a simulator from the intermediate format that is created in line 17.

To run the code, right-click in area with the code. A context menu appears:

References >

Declarations >

@ Coverage As 1 >
¥ Debug As 2
Team

Run Configurations...

Compare With
Replace With

Preferences...

Navigate to the ‘Run As’ sub-menu, open it, and click the ‘Java Application’ option.

17

	Architecture
	Software setup
	Installing Eclipse
	Eclipse installer
	Portable Eclipse files

	Importing jEULYNX

	jEULYNX code base overview
	Packages
	EULYNX diagram files
	__Run.java files

