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Introduction  

The Supporting Information provides other details besides the main text to support this study, including 
statistical data on population and food production, method schemes, model validation results, information 
on the study area, modelled results of nitrogen delivery to surface waters, nitrogen retention loads in river 
basins and nitrogen inputs from each external source and their spatial distributions in the coast, and 
reported eutrophication status and red tide outbreaks in Chinese seas. Movies and modelled output data 
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1. Figure S1. Population and production of crop, livestock and aquaculture in China for 1970–2017 

 

Figure S1. Population and production of crop (cereals in dry weight and others in wet weight), livestock meat 

(in carcass weight, excluding offal and slaughter fats) and aquaculture (in wet weight) in China for 1970–2017. 

Data are from FAO (FAO, 2018, 2019). 
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2.  Figure S2. Scheme of Integrated Model to Assess the Global Environment–Global Nutrient Model 

(IMAGE–GNM) 

 

Figure S2(a). Scheme of Integrated Model to Assess the Global Environment–Global Nutrient Model 

(IMAGE–GNM), adapted from Beusen et al. (2015); (b). scheme of the model framework with PCR-GLOBWB 

and IMAGE and data flows between the models, adapted from Beusen et al. (2015) and Liu et al. (2018). 

 

IMAGE-GNM uses the 0.5°-grid-based global hydrological model PCRaster Global Water Balance (PCR-

GLOBWB) (Van Beek et al., 2011) to quantify the hydrological properties in river basins, including water stores 

a 
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and fluxes, volume, surface area, and thus depth of water bodies, and water travel time (Beusen et al., 2015). 

According to the IMAGE-GNM model framework in the publications (Beusen et al., 2015), a) each grid cell in 

the basin receives water and dissolved and suspended nitrogen from upstream grid cells; b) inside the grid 

cell, nitrogen is delivered to water bodies via diffuse sources (surface runoff, shallow and deep groundwater, 

riparian zones; litterfall in floodplains; atmospheric deposition) and wastewater; c) nitrogen retention in a 

water body is calculated based on water residence time and nutrient uptake velocity; d) water and nitrogen 

are transported to downstream grid cells. In-stream retention process in the river basin included in IMAGE-

GNM comprises of denitrification, sedimentation, and uptake by aquatic plants.  

For more details on IMAGE-GNM, please go to the descriptions in previous publications (Beusen et al., 2015; 

Beusen et al., 2016; Liu et al., 2018).  
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3.  Model validation and measurement data sources 

 

Figure S3. (a) TN concentration comparison and (b) discharge comparison: measured versus modelled using 

IMAGE-GNM at river mouths of China’s 3 major rivers (i.e. the Yellow River, Yangtze River and Pearl River). 

The red dashed line is the 1:1 line, and the black line is the linear fitting line. 

 

Table S1. Measurement data sources for model validation. 

River LMEs 

drained 
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Station Parameter Year and sources Observed 

nitrogen forms 

Transfer 

ratio and 

reference 

Yellow 

River 

YS/BS Lijin TN 

concentration 

1980-2010 (Fan and Huang, 

2008; Gu, 2018; Li, 2010; 

Liao et al., 2013; Ma et al., 

2015; Tan, 2002) 

DIN, TN, TDN, 

DON, TON, 

NO3-N, NO2-N, 

NH4-N, TPN 

DIN/TN = 

80% (Tan, 

2002) 

Yangtze 

River 

YS and 

ECS 

Datong TN 

concentration 

1970-1986, 1997-2010 (Dai et 

al., 2011; Liu et al., 2003a; 

Shen et al., 2003; Xu, 2013) 

DIN, TN, TDN, 

DON, TON, 

NO3-N, NO2-N, 

NH4-N, TPN 

DIN/TN = 

50% (Yan et 

al., 2001; 

Zhang, 1990) 

Pearl 

River 

SCS Gaoyao TN 

concentration 

1980-1989 (Duan et al., 2000) DIN DIN/TN = 

50% (Yan et 

al., 2001; 

Zhang, 1990) 

Yellow 

River 

YS/BS Lijin Discharge 1970-2000 (Ministry of Water 

Resource of China, 2003) 

— — 
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Yangtze 

River 

YS and 

ECS 

Datong Discharge 1970-2000 (Ministry of Water 

Resource of China, 2003) 

— — 

Pearl 

River 

SCS Gaoyao Discharge 1970-2000 (Ministry of Water 

Resource of China, 2003) 

— — 

DIN: dissolved inorganic nitrogen; TN: total nitrogen; TDN: total dissolved nitrogen; DON: dissolved organic nitrogen; 

TON: total organic nitrogen; NO3-N: nitrate; NO2-N: nitrite; NH4-N: ammonium; TPN: total particulate nitrogen. 

 

For the period from 1970 to 2010, the model-based TN concentrations generally agree with the measured TN 

concentrations at the monitoring stations located at the mouths of China's three main rivers (i.e. the Yellow 

River, Yangtze River and Pearl River)(Figure S3a). Although the model slightly overestimates the TN 

concentrations, the linear fitting curve with a slope of 0.9266 (p<0.001) in Figure S3a is very close to the curve 

of y = x. The discrepancy between simulations and observations can be partly attributed to the fixed DIN/TN 

ratios (Tan, 2002; Yan et al., 2001; Zhang, 1990) used to estimate TN for the entire period, which may be 

different for different years. However, studies on the measured nitrogen forms and their ratios for different 

years are very limited for the Yangtze River and Yellow River. Moreover, since nitrogen forms and their ratios 

have not been measured in the Pearl River, the DIN/TN ratio measured in the Yangtze River was adopted to 

estimate the measured TN in the Pearl River. Furthermore, we calculate on an annual basis, which may not 

appropriately capture short-term (i.e. monthly or seasonal) observations while some measurements were 

only conducted in several months instead of the whole year.  

 

According to the comparison of modelled and measured discharge at the mouths of China’s three main rivers 

(Figure S3b), the discharge of these rivers is well represented in IMAGE-GNM. The discharge of Yangtze River 

is the largest, that of the Pearl River second, and that of the Yellow River smallest, which also well fits the 

magnitudes of these rivers. Although the model slightly underestimates the discharge for the “large” Yangtze 

River and slightly overestimates the discharge for the “small” Pearl River and Yellow River, the linear fitting 

curve with a slope of 0.8562 (p<0.001) in Figure S3b is very close to the curve of y = x. Since the time step of 

IMAGE-GNM is yearly, short-term (i.e. monthly or seasonal) variations in discharge may not be appropriately 

captured. 

 

Overall, the discharge and nutrient transport in China’s major river basins are well simulated by IMAGE-GNM. 

Considering the good validation results for China’s three main rivers in this study and other rivers in a previous 

study (Beusen et al., 2015), the modelled river nitrogen export to the three Large Marine Ecosystems (YS/BS, 

ECS, and SCS) using IMAGE-GNM is expected to be close to reality.  
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4. Table S2. Information of the Large Marine Ecosystems that border the coasts of China and other 

countries. 

Table S2. Information of the Large Marine Ecosystems. 

Large 

Marine 

Ecosystems 

Marginal 

or 

continental 

seas 

Area 

(103 

km2) 

Average depth (m) Number of River 

basins from 

IMAGE-GNM 

with water 

discharge 

Surrounding 

countries 

Yellow 

Sea/Bohai 

Sea (YS/BS) 

Yellow Sea 

and Bohai 

Sea 

444 18 for Bohai Sea (Zhang et 

al., 2006) and 44 for Yellow 

Sea (Liu et al., 2003b) 

82 China, North Korea 

and South Korea 

East China 

Sea (ECS) 

East China 

Sea 

781 370 (Guan and Mao, 1982) 65 China, South Korea 

and Japan 

South China 

Sea (SCS) 

South 

China Sea 

3232 1350 (Chen et al., 2001) 195 China, Vietnam, 

Malaysia, Singapore, 

Indonesia, Brunei and 

Philippines 
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5.  Figure S4. Scheme of IMAGE–GNM aquaculture nutrient budget model 

 

Figure S4. Scheme of IMAGE–GNM aquaculture nutrient budget model, adapted from (Wang et al., 2019). 
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6. Figure S5. Nitrogen delivery to surface water from diffuse and point sources during 1970-2010 for rivers 

draining to YS/BS, ECS and SCS. 

 

Figure S5. Nitrogen delivery to surface water from diffuse and point sources during 1970-2010 for rivers 

draining to YS/BS (a-c), ECS (d-f) and SCS (g-i). Left column is data for China, middle column is data for the 

other countries, and the right column presents data for the total. 
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7. Figure S6. Nitrogen inputs to YS/BS, ECS and SCS from atmospheric deposition, mariculture and 

submarine fresh groundwater discharge during 1970-2010. 

 

Figure S6. Nitrogen inputs to YS/BS (right column), ECS (middle column) and SCS (right column) from 

atmospheric deposition (a-c), mariculture (d-f) and submarine fresh groundwater discharge (g-i) during 1970-

2010. 
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8. Figure S7. Nitrogen retention loads from rivers, lakes and reservoirs in river basins draining to YS/BS, 

ECS and SCS during 1970-2010. 

 

Figure S7. Nitrogen retention loads from rivers, lakes and reservoirs in river basins draining to YS/BS, ECS 

and SCS during 1970-2010. Total nitrogen retention load = TN lake retention load + TN reservoir retention 

load + TN river retention load (excluding the lake and reservoir shares). “Nitrogen retention load” is the 

nitrogen load which is removed from the water column due to removal processes (retention) in a waterbody 

(Beusen et al., 2015).  
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9. Figure S8. Spatial distribution of nitrogen inputs from river export, atmospheric deposition, mariculture and submarine fresh groundwater 

discharge to the coastal areas of YS/BS, ECS and SCS in 1970 and 2010. 

 

Figure S8. Spatial distribution of nitrogen inputs from all sources to the coastal areas of YS/BS, ECS and SCS in 1970 and 2010: (a, e) river export, 

(b, f) atmospheric deposition, (c, g) mariculture, and (d, h) submarine fresh groundwater discharge (SFGD). 

a b c d 

e f g h 
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10. Figure S9. Eutrophication status and seawater quality status of inorganic nitrogen in Chinese seas in 2018.  

 

Figure S9. (a) Eutrophication status and (b) seawater quality status of inorganic nitrogen in Chinese seas in 2018 

(Ministry of Ecology and Environment of the People's Republic of China, 2019).  

b a 
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11. Figure S10. The distribution of annual frequency of red tide outbreaks in Chinese seas during 1990-1999 

and 2000-2009. 

 

Figure S10. The distribution of annual frequency of red tide outbreaks in Chinese seas during 1990-1999 and 2000-

2009 (State Oceanic Administration, 2010). 
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12. Description on Movies S1. Long-term variations in the detailed sources of river nitrogen export to the 

LMEs. 

The directory “MoviesS1_Sources_of_river_N_export” contains the results of the long-term variations in the 

detailed sources of nitrogen inputs via river export to the YS/BS, ECS and SCS LMEs for the period 1970-2010 

modelled from IMAGE-GNM. The movies show how the total river nitrogen export and contributions of surface 

water (natural), groundwater (natural), surface water (agricultural), groundwater (agricultural), vegetation in 

floodplains, atmospheric deposition (to inland waters), sewage and freshwater aquaculture change during 1970-

2010 in the rivers draining to the YS/BS, ECS and SCS in China, other countries and all countries.  
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13. Description on Movies S2. Long-term variations in the sources of total nitrogen inputs to the LMEs. 

The directory “MoviesS2_Sources_of_total_N_inputs” contains the results of the long-term variations in the 

sources of total nitrogen inputs to the YS/BS, ECS and SCS LMEs for the period 1970-2010. The movies show how 

the total nitrogen inputs to the LMEs and contributions of river export, submarine fresh groundwater discharge, 

atmospheric deposition (to sea) and mariculture change during 1970-2010. 
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14.  Description on Modelled output data used in this study (separate csv files):  

1) Description of Table S3. Detailed sources of river export to the LMEs. 

See file Table S3. Detailed sources of river export to the LMEs.csv. Each line contains the fractions of total nitrogen 

from one detailed source to river export to one LME during 1970-2010. 

The names of detailed sources in the second column are explained here: 

sro_nat: nitrogen in river export from surface runoff in natural area 

sro_agri: nitrogen in river export from surface runoff in agricultural area 

grw_nat: nitrogen in river export from groundwater outflow in natural area 

grw_agri: nitrogen in river export from groundwater outflow in agricultural area 

depo_water: nitrogen in river export from atmospheric deposition in river basins 

pointsources: nitrogen in river export from urban wastewater 

aquaculture: nitrogen in river export from freshwater aquaculture 

veg_flooding: nitrogen in river export from vegetation in floodplains 

 

 

2) Description of Table S4. Sources of total nitrogen inputs to the LMEs. 

See file Table S4. Sources of total nitrogen inputs to the LMEs.csv. Each line contains the fractions of nitrogen 

input from one source to one LME during 1970-2010. 

The names of detailed sources in the second column are explained here: 

nload_mouth: nitrogen inputs from river export to the LMEs 

sfgd: nitrogen inputs from submarine fresh groundwater discharge to the LMEs 

mariculture: nitrogen release from mariculture in the LMEs 

deposition_over_sea: nitrogen inputs from atmospheric deposition over the LMEs 

deposition_over_coast: nitrogen inputs from atmospheric deposition over the coast of the LMEs 

ntotal_sources: total nitrogen inputs from river export, submarine fresh groundwater discharge, mariculture and 

atmospheric deposition over the LMEs 

ncoastal_sources: total nitrogen inputs from river export, submarine fresh groundwater discharge, mariculture 

and atmospheric deposition over the coast of the LMEs  
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