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Abstract

This document describes the field trials for measuring the vitality of potato plants conducted in 2019
and 2020, as well as the methods and techniques pertaining to the extraction and spatial correction of the
vitality data.

1 Field trials and available data
The field trials for measuring the vitality of potato plants have been conducted during two consecutive years,
2019 and 2020, in the same three geographical locations1:

• Montfrin (M), in the South of France (54.4980 N, 5.1090 E)

• Kollumerwaard-SPNA (S), in the North of the Netherlands (ca. 70.4325 N, 6.9825 E)

• Veenklooster (V), in the North of the Netherlands (70.3935 N, 6.7080 E)

Each year the experiments involved 180 batches belonging to 6 varieties (30 batches per variety), labeled
as listed in Table 1. Although the same 6 genotypes were studied in both years, the seed tuber batches that
represented these genotypes had a different production origin among the years. Observing and explaining the
differences between the batches were the main goals of this project.

From the batches that were tested in 2019, only a restricted subset was made available for the microbiome
analysis, with the labels of the selected batches given in the second column of Table 1. The selection was made
a posteriori, after a preliminary analysis of the vitality measurements, to ensure sufficient contrast in vitality
among the restricted sets of batches for each genotype.

genotype batch labels, 2019 batch labels, 2020
A 2, 6, 8, 10, 17, 19, 23, 26, 28, 30 1-30
B 31, 34, 38, 47, 50, 51, 52, 56, 58, 60 31-60
C 214, 216, 220, 223, 247, 249, 250, 258, 259, 260 61-90
D 63, 65, 75, 76, 77, 79, 80, 86, 88, 89 91-120
E 91, 96, 98, 100, 103, 104, 107, 115, 117 121-150
F 202, 205, 217, 219, 224, 229, 231, 232, 237, 238 151-180

Table 1: Labelling of the genotypes, the ranges of the corresponding batch labels, and the batches that were
available for the microbiome analysis in 2019 (in 2020 all batches were available).

From each batch of potato seed tubers, 96 tubers were randomly selected for a field trial and planted in
four different plots of 24 plants. Thus, with 180 batches, this resulted in 720 plots distributed over the trial
field according to a complete randomized block design. For example, the experimental design realized in the
Veenklooster test field is shown in Figure 1.

The development of potato plants was documented with images of the complete field taken by a drone
mounted camera at certain moments after the planting of the seed tubers up until (and sometimes also after)
the canopy closure, i.e., the moment when the leaf canopies of the neighboring plants begin to overlap. The
exact dates of the drone images per year and field can be found in Table 2.

The next sections of this document detail our methodology of measuring the plant vitality, with particular
emphasis on the following stages:

1. RGB image post-processing and plot localization

2. image segmentation and raw canopy area estimation

3. spatial effect removal

4. choice of the vitality measure

5. correlations in vitality across test fields
1All raw, pre- and post-processed vitality data described in this document can be obtained from N.B. (n.v.budko@tudelft.nl)
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Figure 1: Complete randomized block design in the Veenklooster trial field in 2020. Each genotype (A–F,
colors) is repeated four times as four randomly located compact blocks. Each batch has one plot inside the
corresponding genotype block (small polygon), i.e., there are four plots of each batch in total.
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field date DAP zero ridges (%)
M 2019-04-10 36 630 (21.1 %)
M 2019-04-19 45 23 (0.8 %)
M 2019-04-26 52 0 (0.0 %)
V 2019-05-24 36 134 (4.7 %)
V 2019-05-29 41 0 (0.0 %)
V 2019-06-07 50 0 (0.0 %)
S 2019-06-07 36 12 (0.4 %)
S 2019-06-19 48 0 (0.0 %)

field date DAP zero ridges (%)
M 2020-04-10 35 634 (22.0 %)
M 2020-04-13 38 326 (11.3 %)
M 2020-04-16 41 48 (1.7 %)
M 2020-04-18 43 20 (0.7 %)
M 2020-04-22 47 1 (0.0 %)
M 2020-04-25 50 0 (0.0 %)
V 2020-05-27 35 29 (1.0 %)
V 2020-05-30 38 6 (0.2 %)
V 2020-06-07 46 2 (0.1 %)
V 2020-06-10 49 0 (0.0 %)
V 2020-06-12 51 0 (0.0 %)
S 2020-06-03 35 41 (1.4 %)
S 2020-06-10 42 11 (0.4 %)
S 2020-06-12 44 4 (0.1 %)
S 2020-06-15 47 4 (0.1 %)
S 2020-06-19 51 0 (0.0 %)

Table 2: The dates (year-month-day) of the drone images of the three test fields (M, V, and S) in 2019 (left
table) and in 2020 (right table). The ‘DAP’ column shows the time of the drone image in Days After Planting
(DAP). The column ‘zero ridges (%)’ gives the number of ridges (each plot has four ridges) with no measurable
canopy and their fraction among all ridges in the field.

2 RGB image post-processing and canopy measurement

2.1 Plot localization
Due to the relatively large scale of the trials and the chosen planting technique, the trial fields did not exhibit
the usual regular structure with easily identifiable rows and columns of plots. Therefore, we have developed an
in-house standardized procedure with minimal manual interaction to detect and identify plots in the trial fields’
images. The main steps of the plot-detection algorithm are:

1. From the provided row-column plot labeling and schematics, the expected number N of plots along the
ridges of the trial fields is identified

2. The field image where the canopy size allows to detect the gaps between the plots along the ridges is
selected from the available images of the trial field. Such an image is usually found towards the end of
the canopy growth season, where canopies inside a plot are touching, but have not yet grown as to bridge
the gaps to neighbouring plots

3. The beginning and the end of the trial field along each ridge is interactively determined in the selected
image

4. The expected number of N − 1 inter-plot gaps is automatically detected in the images along each ridge.
To this end:

(a) The field image is binarized using a strict green filter such that decidedly green regions will be white
and soil will be black in the resulting image. Since the purpose is to find gaps between lots the usage
of a strict filter is not detrimental in this case

(b) The morphological operation of closure is applied to the binarized image to discard possible noise
left over from the binarization procedure

(c) Each ridge is uniformly divided into N sub-intervals

(d) Image intensity is extracted along three lines parallel and in the neighborhood of the mid-ridge line

(e) The regions for which the intensity along all three lines is zero (black, i.e. soil in our binarization)
are considered the inter-plot gaps and the image coordinates of the midpoint of these regions is saved
for further processing

5. The detected plot polygons are displayed and inspected for eventual remaining inaccuracies and distortions
and the wrongly identified plot boundary points are corrected interactively
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Figure 2: Examples of polygon boundary vertices found in different fields at different times throughout the
season with vertex labels. Numbers inside yellow rectangles are the distances between the two vertices in pixels.
Image titles show the field average of the inter-ridge distance in pixels, which is subsequently used for the
conversion of the canopy area measurements to cm2.

Figure 3: The four plots of the same batch detected in the field. Also shown are the three inter-ridge boundaries
within the plots that allow estimating the canopy area on the subplot level thereby contributing to the estimate
of the canopy variance.

6. For each plot a set of image coordinates of the plot polygonal boundary is saved

Examples of detected inter-plot gaps along the ridges can be found in Figure 2. The four plots of the same
batch detected in a trial field are shown in Figure 3.

2.2 Time alignment and distortion correction
The raw RGB data consisting of stitched orthophotographic images of the trial fields obtained at several dates
during the growth season are not spatially aligned between the dates and sometimes contain significant spatial
distortions.

In the first post-processing step, we searched for the transformations between the reference frames of all
images of the same trial field collected during the growth season. More specifically, we were interested in
the transformation between the reference frame of one particular orthophoto and all other orthophoto’s that
preceeded and followed in time. The need for such transformations stems from the fact that the polygonal
plot boundaries described in the previous section can be successfully detected only at certain dates during the
growth season, when the plants have just the right size. Suppose, the polygonal boundaries of the plots have
been identified on some reference date. To avoid having to detect the plots on another date, which is also often
impossible, we would like to simply superimpose the previously detected boundary polygons on the second
orthophoto. To do that we need to find a transformation of the reference orthophoto to the pixel coordinate
system of the second orthophoto. We call this procedure the time alignment of the two orthophoto’s. While in
general this transformation can be rather complicated, in the present case, an affine transformation turns out to
be completely sufficient, as was confirmed by the visual inspection of the transformed superimposed polygonal
plot boundaries.

Time alignment relies on the presence of time-invariant features with the same physical position in the
images. In the 2019 trials we had to rely on natural time-invariant features, such as the irrigation pipes. In the
2020 trials we had artificial, square, 10 cm × 10 cm, red-colored markers installed in the fields that we could
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Figure 4: Original distorted ‘orthophoto’ of the Montfrin field taken in 2019 (left). The same image with
distortion corrected by warping to achieve approximately the same inter-ridge distance across the field (middle).
High-quality orthophoto of the Montfrin field taken in 2021 (right) confirms that the distortion in 2019 was and
artifact of image stitching.

subsequently find in the images and use as reference points.
The detection of these red markers in the 2020 data was aided by the pre-processing of the images, in which

bright red pixels are filtered and grouped so that their position can be highlighted on an interactive image
plot. The user is shown the image in question with dots in contrasting color plotted at the positions of the
algorithmically detected markers. The user has to zoom in on the relevant portions of the field and manually
select the middle of the markers.

To understand the simple mathematics behind the recovery of the affine transformation, let there be N
markers with their (pixel) coordinates (xi, yi), i = 1, . . . , N , on the reference date stored in the vector p ∈ R2N

as pT = [x1, y1, . . . , xN , yN ]. Suppose that the same N markers have the coordinates (x̃i, ỹi), i = 1, . . . , N in
another orthophoto taken on another date.

Since a two-dimensional affine transformation is defined by just four numbers, two or more markers with
known (same) physical positions in both orthophoto’s are sufficient. Although the more markers one has, the
more robust is the recovery of the transformation against the noise. With N markers the four transformation
elements stored in the vector t ∈ R4 can be recovered by solving the following linear algebraic problem:

1 0 x1 −y1
0 1 y1 x1

. . .
1 0 xN −yN
0 1 yN xN



t1
t2
t3
t4

 =


x̃1

ỹ1
...

x̃N

ỹN

 . (1)

Given a sufficient number of markers, there exists the unique least-squares solution t̂T = [t̂1, t̂2, t̂3, t̂4] to this
problem, which can be used to determine the location of each vertex of the polygonal plot boundary in the
second orthophoto. Let the (pixel) vertex coordinates on the reference date be (x, y), then the pixel coordinates
(x̃, ỹ) of this vertex in the orthophoto from another date can be obtained as:[

x̃
ỹ

]
=

[
t̂1
t̂2

]
+

[
t̂2 −t̂3
t̂3 t̂2

] [
x
y

]
. (2)

The stitched orthophoto images of the Montfrin test field in 2019 contained an additional strong distortion,
see Figure 4, making the inter-ridge distance measured on one side of the field strongly differ from the inter-ridge
distance measured on the other side. The fact that it was a distortion of the image rather than the natural
shape of the field is obvious from the high-quality orthophoto of the same field taken in 2021 (Figure 4, right).
Since this distortion has consequences for both the estimation of the green area and the spatial correction, the
original orthophoto was re-processed. The field image was warped so that the inter-ridge distance in the “left”
part of the image, as measured with the help of selected polygonal vertices, became closer to the inter-ridge
distance measured on the “right”. The same transformation was used to warp the polygonal plot boundaries.
No such distortions were observed or had to be corrected in other fields and years.

2.3 Leaf canopy segmentation and estimation
To measure the canopy area within the polygonal plot boundary, the image pixels are segmented into two
disjoint sets: pixels of the canopy and pixels of the surrounding soil. Then, the canopy pixels are counted and
the result converted to the cm2 units.

5



While a human operator is usually very successful in segmenting an image, a fully automated segmentation
procedure that would work in all circumstances is not available. The present dataset featured a variety of illumi-
nation and moisture conditions, both of which affect the color of pixels. Also, leaf canopy colors have systematic
differences between genotypes, ranging from light green to almost purple. Therefore, every orthophoto had to
be processed individually, resulting in different segmentation filters with date- and field-specific parameters. In
all cases, the quality of segmentation has been confirmed by visual inspection of randomly selected plots of each
genotype.

For all fields and years, except Montfrin 2019, the following simple segmentation procedure gave satisfactory
segmentation results:

1. Convert the image to HSV format

2. Find date-specific range of the Hue and Saturation channels for the canopy (by visual inspection) and set
all the other pixels to ‘black’

3. Filter the Value channel by allowing only the pixels with the value below a threshold and setting all other
pixels to ‘black’

4. Binarize the image (white pixels – canopy, black pixels – soil)

Orthophoto’s of the Montfrin field in 2019 have a lower spatial resolution and overall quality than all other
orthophoto’s (later images have been acquired with a higher resolution camera and by a more experienced
drone operator). Therefore, the segmentation of the Montfrin 2019 orthophoto’s required additional effort and
contained some additional steps:

1. Convert the image to HSV format

2. Find date-specific range of the Hue channel for the canopy. This was done by analyzing the Hue channel
histogram, which showed two peaks, canopy and soil, with the canopy peak growing in time. Set all the
other pixels to ‘black’

3. Equalize Saturation and Value channels

4. Filter the Value channel by allowing only the pixels with the value below a threshold and setting all other
pixels to ‘black’

5. Obtain a grayscale image by applying a weighted combination (weights were manually adjusted to achieve
the best segmentation) of some standard agricultural ‘green’ filters. The Normalized Difference Red/Green
Redness Index (RI) [5], [2], Excess Green (EXG) [3], and Brightness Index (BI) [4]:

BI =

√
r2 + g2

2
(3)

EXG =2g − (r + b) (4)

RI =
r − g

r + g
(5)

6. Normalize the image, set all pixels below a threshold to ‘black’, and binarize the image

7. Remove ‘salt and pepper’ noise by a morphological transformation

8. White pixels – canopy, black pixels – soil

The parameters of the above segmentation procedures are provided in Table 3 for each field and date.

2.4 Conversion from pixels to cm2

After segmentation, the mean canopy area Spx (in pixels) over each ridge of each plot was determined by
summing all white pixels within the geometrical boundaries of the ridge and dividing by 6 – the number of
plants in each ridge. To convert a canopy area in pixels to its area in cm2, we use the fact that the distance
dcm between the ridges in the field is determined by the planting device and is dcm = 75 cm in the Veenklooster
(V) and Kollumerwaard-SPNA (S) fields, and dcm = 74 cm in the Montfrin (M) field.
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field/date H range S range S,V equalize V filter weights (BI,RI,EXG) thresh. morph.
M-2019-04-10 [40, 80] [0, 255] yes [0, 100] 0.8, 0.8, 1.0 0.3 yes
M-2019-04-19 [25, 100] [0, 255] no [0, 110] 0.1, 0.3, 0.6 0.25 yes
M-2019-04-26 [25, 80] [0, 255] no no 0.0, 0.0, 1.0 0.35 no
V-2019-05-24 [30, 125] [63, 255] – – – – –
V-2019-05-29 [30, 100] [63, 255] – – – – –
V-2019-06-07 [50, 125] [0, 255] – – – – –
S-2019-06-07 [30, 110] [30, 150] – – – – –
S-2019-06-19 [30, 100] [55, 255] – – – – –
M-2020-04-10 [40, 68] [86, 162] – – – – –
M-2020-04-13 [40, 68] [86, 162] – – – – –
M-2020-04-18 [40, 68] [86, 162] – – – – –
M-2020-04-22 [40, 68] [86, 162] – – – – –
M-2020-04-25 [50, 80] [60, 255] – – – – –
V-2020-05-27 [35, 120] [59, 255] – – – – –
V-2020-05-30 [35, 80] [60, 255] – – – – –
V-2020-06-07 [50, 120] [100, 140] – – – – –
V-2020-06-10 [50, 120] [100, 140] – – – – –
V-2020-06-12 [50, 120] [100, 140] – – – – –
S-2020-06-03 [40, 100] [80, 255] – – – – –
S-2020-06-10 [35, 120] [80, 160] – – – – –
S-2020-06-12 [35, 120] [80, 160] – – – – –
S-2020-06-15 [35, 120] [100, 200] – – – – –
S-2020-06-19 [40, 100] [80, 255] – – – – –

Table 3: Field- and date-specific parameters for canopy segmentation in orthophoto’s.

To find the pixel-to-cm conversion factor, we compute the average pixel distance dpx between the adjacent
ridges in the field for a specific date (see Figure 2). Then, the area S1 of a single pixel in cm2 is given by:

S1 =

(
dcm
dpx

)2

. (6)

Thus, the canopy area S in cm2 is obtained from the canopy area Spx in pixels as:

S = S1Spx. (7)

3 Spatial effect removal
The ridge-mean plot canopies obtained after the transformation, plot localization, and segmentation procedures
described above constitute the raw data and cannot be used to estimate the mean batch canopy, since the test
fields are usually spatially nonuniform, which may systematically increase or decrease the canopy size in certain
areas of the field. The spatial effect is well-illustrated in Figure 3, showing the four plots of the same batch,
with the plot depicted in the right-most image having significantly smaller canopies than the other three plots.
Obviously this plot has been affected by some unfavourable growth conditions and would pull down the estimate
of the mean canopy if included in the calculations as it is.

1 library(statgenSTA)
2 library(SpATS)
3

4 CanopyMeasurement <- read.csv("/Path_to_Canopy_measurement.csv", header = TRUE , sep = ",")
5

6 TableToFit <- createTD(data = CanopyMeasurement , genotype = "Batch",
7 repId = "Block", subBlock = "Block",
8 rowCoord = "Row", colCoord = "Col")
9

10 FittedModel <- fitTD(TD = TableToFit , trials=’trialname ’,traits = "Canopy",
11 design = "rcbd")
12

13 BLUEsTable <- extractSTA(STA = FittedModel , what = "BLUEs", keep = "Variety")

Listing 1: Code to produce the array of spatially corrected canopies from the raw measured array in R
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Figure 5: Spatial plot produced by the package SpaTS as an illustration of spatial effect removal.

We use the state of the art spatial effect removal method [6], implemented in the R-package SpaTS [1], that
removes both random and fixed spatial effects and provides the Best Linear Unbiased Estimate (BLUE) of the
mean batch canopy size. The typical output of the SpaTS package is illustrated in Figure 5. We apply the
spatial effect removal to the raw canopy data obtained from all available orthophoto’s.

4 Example of the canopy area estimation procedure
The following Python code will produce the Figure...

5 Choice of the vitality measure
There is no universally accepted measure of the plant vitality. In fact, although it may be a matter of semantics,
one could argue that the term ‘vigor’ is more applicable in the present situation. In any case, the size of the
leaf canopy to a large extent determines the yield of potato plants, which is the ultimate goal of potato farmers.
Therefore, the sooner a plant can develop a large canopy the more vigorous or vital is this plant. From this
point of view, it appears that considering the time evolution of the canopy could eventually lead to a measure of
vitality. Unfortunately, systematic analysis of the canopy time evolution could not be achieved in this project
due to sparsity and inconsistency of the imaging dates. Nevertheless, a well-chosen single-time measurement of
the canopy size may be indicative of the plant vitality as well. One should be aware though that a large canopy
at a certain point in time could be either due to an early-emergent but relatively slow-growing plant or due
to a late-emergent and fast-growing plant. Nevertheless, a relatively large canopy somewhere in the middle of
the growth season, after the early ‘transients’ related to the emergence time and the initial rate of growth have
passed, is surely indicative of the plant vitality. Indeed, as long as a plant acquires a large canopy at a useful
point in time, i.e., not too late in the season, it can be considered a vital/vigorous plant, and it does not really
matter whether it is due to an early emergence time or a fast initial growth rate.

Figure 6 and Figure 7 show the summary of the BLUE canopy data for each of the six genotypes at the
available time points for each year and field. As one can see, the growth pattern and the attained canopy size
are different between the fields and years. This can be attributed to the varying weather conditions and soil
types, caused mainly by the difference in geographic location and the different times of the year the seed tubers
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were planted in each field (see Table 2). Hence, a single a priori chosen day after planting cannot be used as
a time point to take the vitality measurement. Therefore, our choice of the canopy measurement date is year-
and field-specific and is guided by the data and the following basic principles:

• It should be possible to compare different batches within each genotype

• The plant-plant and batch-batch interactions should be avoided

From this point of view, there is just one or two dates per year and field among the available data that can be
used as the vitality measure. Indeed, in the early measurements not all plants have emerged yet, which does not
allow for a fair comparison of the batches. In the late measurements, the canopies of rapidly growing genotypes
start "merging" not only inside the plots, but also with those of the neighboring plots, thus introducing plant-
plant and batch-batch interactions.

We have noticed that from 47 to 50 DAP’s all plants have emerged and the canopies are not yet overlapping,
making this a good time range to consider and reducing the choice to one or two dates per field in each year.
From Figure 6 and Figure 7 it is clear that this corresponds to the end of the exponential growth period and
precedes the period of ‘saturation’ in the expected sigmoid growth curves. The remaining choice between the
few acceptable dates was made by taking into account the quality of the orthophoto’s, i.e., the precision of the
canopy area measurements. It should be mentioned that these final choices do not alter the conclusions of the
subsequent association/regression studies in any significant way, since the data at these time points are very
highly correlated, Table 4.

M 52 S 48 V 50
M 45 90% - -
S 36 - 98 % -
V 41 - - 90%

M 47 M 50 S 47 S 51 V 49 V 51
M 43 99% 98 % - - - -
M 47 - 100% - - - -
S 44 - - 95% 91 % - -
S 47 - - - 97 % - -
V 46 - - - - 90% 87%
V 49 - - - - - 94%

Table 4: Correlations of canopy size at two points in time in 2019 (left) and in 2020 (right).

Our final choices of the dates for the vitality measurement are highlighted with green boxes along the x-axis
of In Figure 6 and Figure 7.

6 Correlations in vitality across fields
After all the necessary steps for the vitality data extraction and removal of known effects, an exploratory analysis
of the vitality data has been performed to ascertain the plausibility of the main project hypothesis that the
vitality of a plant is determined, at least to a certain extent, by the seed tuber from which the plant has grown.
The presence of such dependence could be inferred if the vitality of the plants produced by the seed tubers of
a given batch, relative to other batches, was consistent for repetitions inside the field and, especially, across
different fields.

Pearson correlation of the vitality data provides an adequate measure of consistency. Correlation analysis
can only be applied within a given year, where tubers of the same batches were planted in three different fields.
As was mentioned above, while the same genotypes were tested in both years, the seed-tuber batches had a
different production origin in each year and cannot be directly compared for consistency.

Correlations between the raw and spatially corrected (BLUE) vitality data across fields in each year are
shown in Figure 8 and Figure 9. The symbols along the horizontal and vertical axes denote the test fields. The
range of statistical significance (p-value) of these correlation results is indicated with the star symbols next to
the value: three stars, p < 0.001, i.e., very significant, one or no stars – not significant. One can see that both
the raw and the BLUE data significantly correlate across the fields in both years, with the spatial effect removal
leading to a slight increase in the correlation. The fact that the correlations are not perfect can be explained
by the influence of the weather and soil conditions, inconsistent application of the herbicide, and the aging of
the seed tubers.

Figure 10 presents the correlations individually for each genotype and shows a much more varying picture
with the lack of correlation for some genotypes in some years. For instance, the seed batches of the genotype D
performed consistently in 2019 across all three fields, whereas, in 2020, the only strong correlation was between
the Montfrin and the Kollumerwaard-SPNA fields, and the other correlations were weak and insignificant. At
the same time, the seed batches of the genotype C show persistent correlations across all fields in both years.
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Figure 6: Summary of all available measurements in 2019 per genotype as boxplots. The choice of the date for
the vitality measurement is highlighted in green color on the x-axis.

7 Precision measure for microbiome predictions and confusion matrix
The random forest (RF) algorithm allows to make a prediction of the continuous vitality parameter based on
the microbial composition of different seedlots. While the accuracy of this prediction can sometimes be low, it
may still be sufficient to categorize the vitality of a seedlot as belonging to one of the three practically important
classes or quantiles: low (L), middle (M), or high (H) vitality. We introduce the three quantiles of interest as
the values that divide the vatality range into three portions of equal probability. In the absence of a well-defined
a-priori probability distribution, one can estimate these quantile boundaries by putting them between the three
equal-size portions of the ordered data vector.

After assigning a quantile-based class to each predicted vitality value, i.e., quantization of the results, the
regression problem turns into a classification problem, where other measures of accuracy should be applied. To
measure the performance of the classification model, we compute the class-specific precision measure for a class
Ci as:

Precision(Ci) =
True positives(Ci)

True positives(Ci) + False positives(Ci)
, (8)

which is the ratio of correctly classified samples in Ci over the total number of samples classified as Ci. Note,
that this is an estimate of the conditional probability:

Precision(Ci) ≈ P (Ci|Ci) = P(x measured Ci|x predicted Ci) =
P(x predicted Ci ∩ x measured Ci)

P(x predicted Ci)

A comprehensive measure of the model performance is the confusion matrix which contains all possible condi-
tional probabilities: P (L|H) P (M |H) P (H|H)

P (L|M) P (M |M) P (H|M)
P (L|L) P (M |L) P (H|L)

 ,

where the precision measures are on the diagonal and the cross-class conditional probabilities are off diagonal
and are estimated as:

P (Ci|Cj) ≈
Number of measured Ci predicted as Cj

True positives(Cj) + False positives(Cj)
. (9)
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Figure 7: Summary of all available measurements in 2020 per genotype as boxplots. The choice of the date for
the vitality measurement is highlighted in green color on the x-axis.

Figure 8: Correlations in raw vitality data between the fields in 2019 (left) and 2020 (right).

For example, in the first row of the matrix we see how likely it is for a sample, which we classify as highly vital,
to have been measured as of low, medium, or high vitality.

Intuitively, a good classification model will have values close to one on the anti-diagonal of the confusion
matrix and low values off the anti-diagonal, indicating that the probability to be misclassified is much lower
than the probability to be classified correctly. In particular, the magnitude of the first element of the first row
and the third element of the third row measure the probabilities of the most severe and practically dangerous
misclassifications.
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Figure 9: Correlations in spatially-corrected (BLUE) vitality data between the fields in 2019 (left) and 2020
(right).

Figure 10: Correlations in spatially-corrected (BLUE) vitality data between the fields per genotype in 2019 (top
row) and 2020 (bottom row).
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