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Abstract: Fracture network connectivity and aperture (ondwectivity) distribution are two
crucial features controlling the flow behavior cdturally fractured reservoirs. The effect of
connectivity on flow properties is well document®de focus here on the influence of fracture
aperture distribution. We model a two-dimensiomaktured reservoir in which the matrix is
impermeable and the fractures are well-connectdw ffactures obey a power-law length
distribution, as observed in natural fracture nekso For the aperture distribution, since the
information from subsurface fracture networks msiled, we test a number of cases: log-normal
distributions (from narrow to broad), power-lawtdisutions (from narrow to broad), and one
case where the aperture is proportional to théudradength. We find that even a well-connected
fracture network can behave like a much sparsevarktwhen the aperture distribution is broad
enough @ < 2 for power-law aperture distributions ald> 0.4 for log-normal aperture
distributions). Specifically, most fractures can dleminated leaving the remaining dominant
sub-network with 90% of the permeability of thégoral fracture network. We determine how
broad the aperture distribution must be to appraaah behavior and the dependence of the
dominant sub-network on the parameters of the agedistribution. We also explore whether
one can identify the dominant sub-network withoaoihd flow calculations.
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backbone of the truncated fracture netwokk) (hormalized by the total length of the
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= 0.2, (c)o = 0.6. Fractures are eliminated according to cbffié criteria.

Figure 44. Sub-network equivalent permeabilit))( normalized by the equivalent
permeability of the original fracture networkgj, plotted against the length of the
backbone of the truncated fracture netwokk (hormalized by the total length of the
original fracture networklf), for the cases where the aperture is proportiomahe
fracture length. Fractures are eliminated accortbhrgjfferent criteria.

Table 1. Description of criterion.
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Figure 1. Fracture aperture d for one realization of a polaerdistribution for each value of the
exponenta.
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Figure 2. Sub-network equivalent permeabilitg)(normalized by the equivalent permeability of
the original fracture networkK), plotted against the length of the backbone efttncated

fracture networkl(,) normalized by the total length of the originadture networkl(): power
law aperture distributions with (a)= 1.001, (bxx = 2, (c)a= 3, (d)a =4, (e)a =5, (f)a = 6.

Results of 100 realizations shown for each value &ed curve is the average trend curve.



0.8
O —a = 1.001
i 0.6 :2 ;
A 0.4 oea
0.2 -a=5
-a=6
0 | | ' |

0 0.2040.60.8 1
lb/lo

Figure 3. Average curves from Fig.2.
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Figure4. Original fracture network and backbone of the sebwork which retains 90% of the

original equivalent network permeability: (a) origl fracture network. (b-g) sub-network which
retains 90% of the original network permeabilitpwer-law aperture distribution with ()=
1.001, (C)a =2, (d)a =3, (€)a =4, (fla =5, (g)a = 6. One realization shown for each value of

a.
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Figure 11. Standard deviation of apertures in the sub-netwadikbonedy) normalized by the
standard deviation of apertures in the originadtinee network J), plotted against the length of
the backbone of the truncated fracture netwhykr(ormalized the total length of the original
fracture networkl(): power-law aperture distributions with @y 1.001, (b} = 2, (c)a = 3, (d)
a=4,(e)a =05, (fla = 6. Results of 100 realizations shown for eadhevafa. Red curve is the

average trend curve.
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Figure 13. Minimum aperture of the sub-network backbod Y normalized by the minimum
aperture of the original fracture network)(), plotted against the length of backbone of the
truncated fracture network,() normalized by the total length of the originadture network
(I,): power-law aperture distributions with @y 1.001, (b}x = 2, (c)a = 3, (d)a = 4, (€)a =5,
(H a = 6. Results of 100 realizations shown for eadbevafa. Red curve is the average trend

curve.
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Figure 14. Average curves from Fig. 13.
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Figure 15. Average aperture of the sub-network backbmlﬁ(} formalized by the average

aperture of the original fracture networK}, plotted against the length of the backbone ef th
truncated fracture network,( normalized the total length of the original fraret network §,):
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= 6. Results of 100 realizations shown for eachiealfa. Red curve is the average trend curve.
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Figure 16. Average curves from Fig. 15.
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Figure 17. Fracture aperture follows log-normal distributieith the same mean value but

different standard deviation in log-10 space.
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Figure 18. Sub-network equivalent permeabilitg)(normalized by the equivalent permeability

of the original fracture networkg), plotted against the length of the backbone eftthncated

fracture networkl(,) normalized by the total length of the originalcttare networkl(): log-

normal aperture distributions with (@ 0.1, (b)g = 0.2, (c)o = 0.3, (d)o = 0.4, (e)o = 0.5, (f)

o = 0.6. Results of 100 realizations shown for ezbe ofs. Red curve is the average trend

curve.
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Figure 19. Average curves from Fig. 18.
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Figure 20. Original fracture network and the backbone ofghk-network which retains 90% of
the original equivalent network permeability, fogtnormal aperture distribution: (a) original
fracture network. (b)- (g) sub-network which re&a0% of the original network permeability:

log-normal aperture distribution with (&)= 0.1, (b)o = 0.2, (c)o = 0.3, (d)o = 0.4, (e)o = 0.5,

(f) o = 0.6. One realization shown for each value of
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Figure 21. Length of sub-network backbonlg)(normalized by the total length of the original
fracture networkl() plotted against the percentage of eliminateddras, for the cases of log-
normal aperture distributions with the same log-meaue but different log-standard deviations

(o) from 0.1 to 0.6. Average trend curve for 100 izzdions shown for each value of
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Figure 22. Histogram ofQ for each fracture normalized by the minimum vadt& for all
fractures in the backbone in log-10 space: log-mbaperture distributions with (a)= 0.1, (b)
0=0.2,(c)g =0.3, (d)o = 0.4, (e)o = 0.5, (o = 0.6. Results of one realization shown for

each value of.
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Figure 23. Q for each fracture normalized by the minimum vadti€ for all the fractures in
log-10 space plotted against fracture aperturentmgnal aperture distributions with (@)= 0.1,
(b) o =0.2, (c)o = 0.3, (d)o = 0.4, (e)o = 0.5, (f)o = 0.6. Results of one realization shown for

each value of.
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Figure 24. Q for each fracture normalized by the minimum vadti€ for all the fractures in
log-10 space plotted against fracture length l:nogmal aperture distributions with (@)= 0.1,
(b)o =0.2, (c)o =0.3, (d)o = 0.4, (e)g = 0.5, (flo = 0.6. Results of one realization shown for

each value of.
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Figure 25. Comparison of) of fractures when they are in the original fraetaetwork Qo) and

in the critical sub-network@,): log-normal aperture distributions with @) 0.1, (b)o = 0.2,
(c)o =0.3, (d)g =0.4, (e)o = 0.5, ()o = 0.6. Both 0fQy andQy, are normalized by the

minimum value ofQ in the original fracture networlQ{*). Results of one realization shown for

each value of.
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Figure 26. Comparison of aperture distribution of the oradifracture network and the critical

sub-network: log-normal aperture distributions Wiho = 0.1, (b)e = 0.2, (¢c)o = 0.3, (d)o =

0.4, (e)o = 0.5, (fljo = 0.6. Results of one realization shown for eahe ofc.
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Figure 27. Standard deviation of apertures in the sub-netwadkbonedy) normalized by the
standard deviation of apertures in the originakbaoe (), plotted against the length of the
backbone of the truncated fracture netwdgl formalized by the total length of the original

fracture networkl(): log-normal aperture distributions with @) 0.1, (b)o = 0.2, (c)o = 0.3,
(d)o =0.4, (e)g = 0.5, (flo = 0.6. Results of 100 realizations shown for eaahe ofo. Red

curve is the average trend curve.
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Figure 28. Average curves from Fig. 27.
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Figure 29. Minimum aperture of the sub-network backbodig)(normalized by the minimum

aperture of the original fracture netwotk}(), plotted against the length of the backbone ef th
truncated fracture network,] normalized by the total length of the originadture networkl):

log-normal aperture distributions with @)= 0.1, (b)e = 0.2, (c)o = 0.3, (d)o = 0.4, (e)o =
0.5, (f)o = 0.6. Results for 100 realizations shown for ezaie of 0. Red curve is the average

trend curve.
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Figure 30. Average curves from Fig. 29.

-36-

1



a) s b) s c) =
2o | 2o | 2o |
= 4 = 4 = 4
S~ ~ S~
39 2 39 2 39 2 14
0 — — ; 0 — — 0 r T
0 02 04 06 08 1 0O 02 04 06 038 1 0 02 04 06 08
/1, ly/1, lp/1,
d) s e) s f) s
30 1 30 1 30
=4 < 4 = 4
~— S~ 1& ~~ 186
28, |3 28, | X3, iy
0 — T 0 — — 0 — T
0 02 04 06 08 1 0 0.2 04 06 038 1 0 02 04 06 0.8 1
lb/lo lb/lo lb/la

Figure 31. Average aperture of the sub-network backbatj) (hormalized by the average
aperture of the original fracture netwotK)(), plotted against the length of backbone of the

truncated fracture network,( normalized by the total length of the originadture network

(1,): log-normal aperture distributions with @)= 0.1, (b)o = 0.2, (c)o = 0.3, (d)o = 0.4, (e)o
= 0.5, (f)o = 0.6. Results of 100 realizations shown for eaabe ofc. Red curve is the average

trend curve.
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Figure 32. Average curves from Fig. 31.
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Figure 33. Sub-network equivalent permeabilitg)(normalized by the equivalent permeability

of the original fracture networkg), plotted against the length of the backbone eftthncated

fracture networkl,) normalized by the total length of the originadture networkl(): aperture
is proportional to fracture length. Results of X8alizations shown. Red curve is the average

trend curve.
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Figure 34. Average curves from Fig. 2b and Fig. 33.
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Figure 35. Histogram ofQ of each fracture normalized by the minimum valt@@f all the
fractures in log-10 space: aperture is proportibmdtacture length. Results of one realization

shown.
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Figure 36. Q of each fracture normalized by the minimum valt@®f all the fractures in log-
10 space plotted against aperture: aperture isopiiopal to fracture length. Results of one

realization shown.
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Figure 37. Comparison of aperture distributions of the oréjifnacture network and the critical

*
PR A 4

sub-network: aperture is proportional to fractumedth. Results of one realization shown.
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Figure 38. Comparison of) of fractures when they are in the original fraetaoetwork Qg) and
in the critical sub-network(@,): the case of the aperture is proportional toftheture length.
Both of Qo andQy, are normalized by the minimum value@fn the original fracture network

(Q™). Results of one realization shown.
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Figure 39. Standard deviation of apertures in the criticil-setwork backboned) normalized
by the standard deviation of apertures in the oabiracture networkdg), plotted against the
length of the backbone of the truncated fractutevaek ({,) normalized by the total length of

the original fracture networl{): aperture is proportional to fracture length. essof 100

realizations shown. Red curve is the average tcene.
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Figure 40. Minimum aperture of the sub-network backbod) normalized by the minimum
aperture of the original fracture netwotK))), plotted against the length of the backbonthef

truncated fracture network,( normalized by the total length of the originadture network
(lp): aperture is proportional to fracture length. iessof 100 realizations shown. Red curve is

the average trend curve.
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Figure 41. Average aperture of the sub-network backbetf§ tormalized by the average

aperture of the original fracture networ§, plotted against the length of the backbonéef t

truncated fracture network,() normalized by the total length of the originadture network

(L,): aperture is proportional to fracture length. &essof 100 realizations shown. Red curve is

the average trend curve.
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Figure 42. Sub-network equivalent permeabilitg)(normalized by the equivalent permeability

of the original fracture networlkg), plotted against the length of the backbone eftthncated
fracture networkl(,) normalized by the total length of the originadture networkl() for

power-law aperture distributions with @y 1.001, (b = 2, (¢c)a = 6. Fractures are eliminated

according to different criteria.
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Figure 43. Sub-network equivalent permeabilitg)(normalized by the equivalent permeability
of the original fracture networlkg), plotted against the length of the backbone eftthncated
fracture networkl,) normalized by the total length of the originadture networkl(,) for log-
normal aperture distributions with (@)= 0.1, (b)o = 0.2, (c)g = 0.6. Fractures are eliminated

according to different criteria.
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Figure 44. Sub-network equivalent permeabilitg)(normalized by the equivalent permeability
of the original fracture networlg), plotted against the length of the backbone efttbhncated
fracture networkl(,) normalized by the total length of the originadture networkl(), for the
cases where the aperture is proportional to tletura length. Fractures are eliminated according

to different criteria.
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Tablel

Criterion Description

Aperture )
Length ()

Number of intersections)
Flow simulation resultsql)
Aperture x Lengthd X 1)
Aperturé x Length @2 x 1)
Aperturé x Length @3 x 1)
Aperture x Length(d x 1?)

© 00 N o 0o b~ w N PP

Aperturé / Length (d3/ 1)

=
o

Aperture x Number of intersectiong (x n)

[ —
[

Length xNumber of intersectiong (x n)

=
N

Aperture x Length x Number of intersectiods X [ X n)
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