
1

Quick start guide
for PY_BANSHEE

Paul Koot, Miguel Angel Mendoza-Lugo, Dominik Paprotny, Daniël T. H. Worm, Elisa

Ragno, Oswaldo Morales-Nápoles,

Contents
Preface .. 2

Requirements .. 2

Installation .. 2

Overview of the package .. 2

Using the package ... 3

Creating DAGs of new NPBN models .. 3

BN Rank Correlation Matrix (bn_rankcorr) ... 4

Visualize the BN (bn_visualize) .. 6

Diagnostic test 1: Goodness-of-fit test for copulas (cvm_statistic) .. 8

Diagnostic test 2: Distance between Gaussian densities (gaussian_distance) 10

Inference of the BN (inference) ... 13

Using real-world example models .. 14

2

Preface
This short guide was written to enable users an easier start with the PY_BANSHEE package.

It has the same structure as the quick guide for BANSHEE, the MATLAB equivalent toolbox.

It is not a step-by-step guide, but rather clarifies the main options for users to apply the

package in their Python scripts. We recommend to read it in combination with our paper

“BANSHEE–A MATLAB Toolbox for Non-Parametric Bayesian Networks” and the update

paper “Update (1.2) to BANSHEE-A MATLAB toolbox for Non-Parametric Bayesian Networks

and Python-based version (1.0) PY_BANSHEE”.

Requirements
A Python environment in which the package can be installed using pip. The package was tested

with a Python 3.9.7 virtual environment built with Anaconda, but should work with some older

versions as well.

Installation
In the command prompt, activate the virtual environment (create a new one if necessary) in

which the PY_BANSHEE package will be installed. The package can also be installed in the

base environment. However this is discouraged particularly for Anaconda, as a ‘pip install’

might conflict with other packages present that were already installed using ‘conda install’. Use

pip install py-banshee to install PY_BANSHEE and its dependencies.

The package can be updated by running the same command. If working in a virtual

environment, please make sure the package graphviz is also installed there. Graphviz is the

python package that is used to visualize the NPBN (function bn_visualize). If you want to use

this function, besides the python package graphviz also the Graphviz software should be

installed.

For Windows:

1. Install windows package from: https://graphviz.org/download/ (Linux and Mac

instructions can be found here as well)

2. Install python graphviz package

3. Add 'bin' folder to User path in environment variables manager (e.g: C:\Program Files

(x86)\Graphviz2.38\bin)

4. Add location dot.exe to System Path (e.g: C:\Program Files

(x86)\Graphviz2.38\bin\dot.exe)

Overview of the package
BANSHEE has two components:

 Six function scripts for implementing and analyzing non-parametric Bayesian

Networks (NPBN);

 Three scripts containing example applications of the NPBN functions, intended for

learning how to use the package and NPBN method in general; example_3.py is the

Python equivalent of example.m in the MATLAB Toolbox BANSHEE.

3

Each function has an extensive description in its header, which is also accessible through

Python’s help function, e.g.:

help(inference) # access help for function inference

The ensuing help text presents all arguments and options of each PY_BANSHEE function and

provides background information.

Using the package
When using the package for the first time, it is recommended to run example_3.py, a script

that highlights the use of all five function scripts. This section contains information on how to

use each function illustrated by each step of the example_3.py script.

Creating DAGs of new NPBN models
NPBN models are largely expert knowledge-driven models. They are intended to recreate real-

life interactions in a probabilistic framework. The structure could still be learned from the data

using an iterative approach. In the first step, a simple rank correlation matrix can help to

identify the first arc between a variable of interest and an explanatory variable (according to

the user’s designation of those). It can be generated with a function from the pingouin package

pairwise_corr for a pandas DataFrame data:

RHO=pg.pairwise_corr(data,method='spearman')

Further arcs are added by the user (using expert knowledge or the unconditional correlations)

and then running the bn_rankcorr function from PY_BANSHEE. Plotting the BN rank

correlation matrix and visualizing the directed acyclic graph (DAG) with the (conditional)

correlations with bn_visualize allows identifying arcs for which the correlation is very low.

These arcs could be removed and the correlation matrix recalculated to obtain new

(conditional) correlations in the BN. The iterative process can be combined with the diagnostic

tools of the toolbox (primarily gaussian_distance) and validation of the BN’s predictions

obtained through inference function, as shown in the example_3.py script. The most

important feature of the DAG that has to be maintained is the lack of circular connections

between variables (it has to be acyclic).

Example

The example_3.py script employs a dataset cities.csv, which contains data on nine quality-

of-life indicators in 329 cities in the United States. This file can be downloaded from the Github

repository (https://github.com/mike-mendoza/py_banshee). In the first step, data are

loaded: the DataFrame data contains the numerical data, with nine variables in columns and

a row of data per city. The column headers contain the variable names, which is useful to have

for visualizing the NPBN and other analyses (default names are assigned if names are not

specified). The purpose of the model is to use different indicators of quality of life and predict

the level of personal safety in American cities.

https://github.com/mike-mendoza/py_banshee

4

The data are prepared as follows:

Set random seed to obtain the same inference results every run, for
research purposes (used by sampling in function inference from prediction.py)
np.random.seed(123)

Define location of data file
data = pd.read_csv(‘cities.csv')

Define name of output figure with BN; used by bn_visualize
fig_name = 'bn_cities'

Select the columns to use in the NPBN
columns_used=[0, 6, 7, 8, 3] # climate, arts, recreation, economics,
 # safety
data = data.iloc[:,columns_used]

Extract the variable names
names = list(data.columns)

Extract number of nodes from data
N = data.shape[1]

After the data are ready, the structure of the NPBN is defined (the DAG). The DAG is

constructed through expert knowledge supported by BN rank correlation matrix and the

diagnostic tools. In the code, it is defined as a list parent_cell. Each cell of the array refers to

one node (variable) of the DAG and lists all the parent nodes (empty if there are no parents).

In our example, the DAG (Fig. 3) is as follows:

Defining the structure of the BN
parent_cell = [None]*N
parent_cell[0] = [] # climate (no parents)
parent_cell[1] = [2] # arts (parent node: recreation)
parent_cell[2] = [3, 0] # recreation (parent nodes: economics, climate)
parent_cell[3] = [] # economics (no parents)
parent_cell[4] = [1, 2, 3, 0] # safety (parents: all other variables)

BN Rank Correlation Matrix (bn_rankcorr)
Purpose

R = bn_rankcorr(parent_cell, data, var_names=[], is_data=True, plot=False)

computes the BN rank correlation matrix, which quantifies the strength of the (conditional)

dependency between variables.

Input

parent_cell A list containing the structure of the BN (directed acyclic graph – DAG). Each

list element is a node of the BN and contains a list of the node's parents, defined as a list with

reference to particular cell(s). An example of the DAG is shown in the previous section,

“Creating DAGs of new NPBN models”.

5

data A pandas DataFrame containing data for quantifying the NPBN. Data for each node

need to be located in columns in the same order as specified in parent_cell. The number of

columns need to equal the number of nodes specified in parent_cell. Optionally, a list of rank

correlations can be used, one conditional correlation per arc, following the same structure as

parent_cell. This second option is intended for use in a User-Defined Random Model

(UDRM). An example of a UDRM is shown in example1.py script.

is_data Specifies the input data type:

False – list of lists data contains rank correlations (for UDRM models);

True – pandas DataFrame data contains actual data.

plot (optional parameter). A plot of correlation matrix R can be displayed:

False - do not create a plot (default);

True - create a plot.

var_names (optional parameter). A list containing names of the nodes for the plot; should

be provided if plot==True.

Output

R An n-by-n numpy.ndarray with the Spearman’s (conditional) rank correlations, where

n is the number of nodes, as specified in parent_cell.

Example

The DAG defined in parent_cell variable, the DataFrame Data and (optionally) a list of

variable names names are inputs for the bn_rankcorr function. The inputs are composed as

follows:

R = bn_rankcorr(parent_cell, # structure of the BN
 data, # matrix of data

var_names = names # names of variables
is_data = True, # matrix data contains actual data

 plot = True, # create a plot (False= don't create plot)

The value of is_data is True, as we provide a matrix of actual data to quantify the model.

Further, the value of plot is also True, as we want the function to generate a plot.

Running the function returns a BN correlation matrix R and a plot (Fig. 1).

6

Figure 1: BN rank correlation matrix generated with bn_rankcorr after running example_3.py script.

Visualize the BN (bn_visualize)
Purpose

bn_visualize(parent_cell, R, names, data=None, fig_name="") creates a directed

digraph presenting the structure of nodes and arcs of the Bayesian Network (BN), also

displaying the (conditional) rank correlations at each arc.

Input

parent_cell A list containing the structure of the BN (directed acyclic graph – DAG). Each

cell is a node of the BN and contains a list of the node's parents, defined as a vector with

reference to particular cell(s). An example of the DAG is shown in the previous section,

“Creating DAGs of new NPBN models”.

R An n-by-n matrix with the Spearman’s (conditional) rank correlations, where n is the

number of nodes, as specified in parent_cell. This variable should be generated with

bn_rankcorr function (see section “BN Rank Correlation Matrix”).

names A list containing names of the nodes for the plot

data the same data that can be used as input in bn_rankcorr. When this argument is given

as input, the nodes in the visualization contain the marginal distribution of the data within

each node.

fig_name Name extension of the .png file with the NPBN that is created:

BN_visualize_'fig_name'.png. The file is saved in the working directory.

7

Output

The function doesn’t provide an output variable. Instead, it generates a plot presenting the

DAG: nodes, variables and (conditional) rank correlations and, if data is specified, also the

marginal distributions.

Example

The DAG from the cities example can be visualized using bn_visualize function. The only

required arguments are parent_cell, R and names from the previous steps. Also fig_name

is passed into the function to save the figure:

bn_visualize(parent_cell, # structure of the BN
 R, # the rank correlation matrix (function 1)
 data.columns, # names of variables
 fig_name = fig_name) # figure name

Running the function returns a plot containing nodes (red dots with names of variables), the

arcs with a defined direction, and the value of the (conditional) rank correlations on the arcs

(Fig. 2).

Figure 2: Quantified DAG generated with bn_visualize after running example_3.py script.

By adding and changing the slightly (so the first file is not overwritten):

bn_visualize(parent_cell, # structure of the BN
 R, # the rank correlation matrix (function 1)
 data.columns, # names of variables
 data = data, # DataFrame with data
 fig_name = fig_name + '_margins') # figure name

we come to a plot with marginal distributions (Fig.3).

8

Figure 3: Quantified DAG with marginals generated with bn_visualize after running example_3.py

script.

Diagnostic test 1: Goodness-of-fit test for copulas (cvm_statistic)
Purpose

M = cvm_statistic(DATA, names, plot=False, fig_name="") calculates the

goodness-of-fit for pairs of variables, using Cramer-von Mises statistic.

Input

DATA A DataFrame containing data for quantifying the NPBN. Each column is one variable.

plot A plot of highlighting the optimal copula per pair of variables can be displayed:

False - do not create a plot;

True - create a plot.

names A list containing names of the nodes for the plot.

9

fig_name Name extension of the .png file with the statistics that are created:

cvm_statistics_'fig_name'.png. The file is saved in the working directory.

Output

M A matrix containing the following columns:

[1]: first variable in the pair (column number in the matrix DATA);

[2]: second variable in the pair (column number in the matrix DATA);

[3]: Spearman's rank correlation between variables;

[4]: Cramer-von Mises statistic for Gaussian copula;

[5]: Cramer-von Mises statistic for Gumbel copula;

[6]: Cramer-von Mises statistic for Clayton copula;

[7]: Cramer-von Mises statistic for Frank copula.

The Cramer-von Mises statistic measures the sum of squared difference between the

parametric and empirical copulas.

Example

The cvm_statistic can be used to analyse some of the underlying assumptions of the method.

Firstly, the assumption that the bivariate dependencies between variables can be modelled

with a Gaussian (normal) copula. The function cvm_statistic computes the sum of squared

differences between the parametric and empirical copulas. The lower value of the resulting M

metric, the better fit between the parametric and empirical copulas is achieved. The only

required argument is the matrix of data used in the previous steps:

M = cvm_statistic(data, # DataFrame with data
 names = data.columns, # names of variables

 plot = True, # create a plot (False = don't create plot)
 fig_name = fig_name) # figure name

Running the script will result in the following graph (Fig. 4):

10

Figure 4: Diagnostic results for four copula types obtained using cvm_statistics after running

example_3.py script.

The results of the diagnostic routines M highlight that the Gaussian copula is in the majority of

cases the most suitable for representing the dependency between variables, especially for the

variable of interest (safety).

Diagnostic test 2: Distance between Gaussian densities (gaussian_distance)

Purpose

D_ERC,B_ERC,D_BNRC,B_BNRC=gaussian_distance(R,DATA,SampleSize_1=1000,

SampleSize_2=1000,M=1000,Plot=False, Type="H",fig_name="") computes the d-

calibration score, which compares the distance between both the empirical and BN rank

correlation matrices and the empirical normal rank correlation matrix.

Input

R An n-by-n numpy.ndarray with the Spearman’s (conditional) rank correlations, where

n is the number of nodes. This variable should be generated with bn_rankcorr function (see

section “BN Rank Correlation Matrix”).

11

DATA A DataFrame containing data for quantifying the NPBN. Data for each node need to be

located in columns in the same order as specified in R. The number of columns need to be equal

to the number of nodes specified in R.

SampleSize_1 (optional parameter). The number of samples to be drawn in the resampling

of the distributions in the test d-Cal(ERC,NRC). 1000 is the default.

SampleSize_2 (optional parameter). The number of samples to be drawn in the resampling

of the distributions in the test d-Cal(NRC,BNRC). 1000 is the default.

M (optional parameter). Number of iterations of calculating the d-calibration scores to

compute the confidence interval of the determinant of the sampled random distribution. 1000

is the default.

Plot (optional parameter). A plot of the d-calibration scores can be displayed:

False - do not create a plot (default);

True - create a plot.

Type (optional parameter). A string that sets the type of measure used to calculate the

distance. Available methods are:

'H' Hellinger distance (default);

'KL' Symmetric Kullback–Leibler divergence;

'B' Bhattacharyya distance;

'G' G distance from Abou Moustafa et al. (2010)1.

fig_name Name extension of the .png file with the d-calibration scores that is created:

gaussian_distance_'fig_name'.png. The file is saved in the working directory.

Output

D_ERC Value of the d-calibration score for the empirical rank correlation matrix of DATA

D_BNRC Value of the d-calibration score for the Bayesian Network rank correlation matrix R.

B_ERC Quantile range (5th and 95th percentile) of the distribution of the determinant of the

empirical distribution of DATA transformed to standard normal.

B_BNRC Quantile range (5th and 95th percentile) of the distribution of the determinant of the

empirical distribution of the Bayesian Network.

1 Abou Moustafa, K.T., De La Torre, F., and Ferrie, F. P. (2010). Designing a Metric for the Difference between
Gaussian Densities. In: Angeles et al., "Brain, Body and Machine. Advances in Intelligent and Soft Computing."
Berlin: Springer, 57-70.

12

The score is 1 if the matrices are equal and 0 if one matrix contains a pair of variables perfectly

correlated, and the other one does not, and the score will be “small” as the matrices differ from

each other elementwise.

Example

The second diagnostic test is done with the function gaussian_distance, which requires two

arguments from the cities example, namely the rank correlation matrix R and the dataset data.

D_ERC,B_ERC,D_BNRC,B_BNRC = gaussian_distance(
 R, # the rank correlation matrix
 data, # DataFrame with data
 4000, # number of samples drawn d-Cal(ERC,NRC)
 400, # number of samples drawn d-Cal(NRC,BNRC)
 1000, # number of iterations to compute CI
 Plot = True, # create a plot (0=don't create plot)
 Type = 'H', # take Hellinger distance (default)
 fig_name=fig_name) # figure name

Three additional arguments that can be specified. In this example,

SampleSize_1 = 4000, SampleSize_2 = 400, M = 1000

indicates that the function will draw 4000 samples of the normal distribution, and then

perform 1000 iterations to obtain the distribution of the d-calibration score. This option was

added as the test is sensitive to the number of samples drawn as well as the number of iterations

and is rather severe for large datasets. A plot can be generated (Fig. 5) and finally the distance

metric can be specified out of four metrics implemented in the code. By default, Hellinger

distance is used ('H').

Figure 5: The d-calibration score of the BN model obtained using gaussian_distance after running

example_3.py script.

The plot shows that the d-calibration score of the empirical rank correlation matrix (D_ERC) is

inside the 90% confidence interval of the determinant of the empirical normal distribution

(B_ERC) (Fig. 5 left). The d-calibration score of the BN's rank correlation matrix (D_BNRC) is

well within the 90% confidence interval of the determinant of the random normal distribution

13

sampled for the same correlation matrix (B_BNRC; Fig. 5 right). This means that while the joint

normal copula is not a good assumption for the whole dataset, it is valid for the particular

configuration of the BN model.

Inference of the BN (inference)
Purpose

F = inference(Nodes,Values,R,DATA,OUTPUT=”full”,SampleSize=1000,

Interp=”next”, empirical_data=True,distributions=[],parameters=[]) makes

inference of the BN model, i.e. conditionalizes nodes of the model in order to obtain

conditional distributions, which can be used as predictions for the values of the other nodes

without observed values.

Input

Nodes A vector defining nodes to be conditionalized. The values of the vector define

the variables in the same order as in matrix R. At least one node has to be left out from Nodes

in order to make inferences at least for this one node.

Values A DataFrame containing data on which the inference will be based upon. Data

for each node need to be located in columns in the same order as specified in Nodes and R. The

number of columns need to equal the number of nodes specified in Nodes and R.

R An n-by-n numpy.ndarray with the Spearman’s (conditional) rank correlations,

where n is the number of nodes, as specified in parent_cell. This variable should be

generated with bn_rankcorr function (see section “BN Rank Correlation Matrix”).

DATA A matrix containing data for quantifying the NPBN. Data for each node need to

be located in columns in the same order as specified in Nodes, Values and R. The number of

columns need to be equal the number of nodes specified in Nodes, Values and R.

OUTPUT (optional parameter). A string setting the type of output of the function:

‘full' provides a list with the conditional empirical distributions (default).

'mean' provides a matrix with the mean of the conditional empirical distributions.

'median' provides a matrix with the median of the conditional empirical distributions.

SampleSize Number of samples drawn when conditionalizing the NPBN. 1000 is the default.

Interp A string with the name of the interpolation method. The options are the same

as in MATLAB’s interp1 function: ‘linear’, ‘nearest’, ‘nearest-up’, ‘zero’, ‘slinear’,

‘quadratic’, ‘cubic’, ‘previous’, or ‘next’(default)

empirical_data True if the data are empirical observations, False if data are parametric

distributions

distributions A list with the names of the distributions for each node

parameters A list with the corresponding parameters of the distributions

14

Output

F By default, provides a list with the conditional empirical distributions for each

row in Values and each node not specified in Nodes.

Example

Once the BN model was configured and analysed, it can be used to make inference. The

function inference requires four arguments, of which two are used in the cities example: the

rank correlation matrix R and the dataset Data. The argument Nodes defines which nodes are

to be conditionalized, according to the numbering defined in the DAG by the parent_cell

variable. Per each node conditionalized, a numeric value has to be provided in the variable

Values in the same order as specified in Nodes. For example, if R is a 5-by-5 matrix,

Nodes = [0, 2, 4]

will conditionalize the BN using the first, third and fifth node and make inference of the second

and fourth node. Notice that in contrast to MATLAB (indexing starts at one (1)), indexing in

Python starts at zero (0).

Multiple rows of data (i.e. different observation records) in Values are possible. The

configuration of those arguments in the cities example is:

condition = [0, 1, 2, 3] # conditionalized variables, all except for safety (predict)
values = data.iloc[:,condition].to_numpy() # data for conditionalization

The full inference function is written as follows:

F = inference(condition, # nodes that will be conditionalized
 values, # information used to conditionalize the
 # nodes of the NPBN
 R, # the rank correlation matrix
 data, # DataFrame with data
 Output = 'mean') # type of output data

In this setting, the output variable F will contain only the mean value of the predictions of the

fifth node (safety), computed based on 1,000 samples of the BN, with the empirical marginal

distributions interpolated using the ‘next’ method.

Computations made with inference can be e.g. used to compare prediction of the model with

observations. It should be noted that the function, for larger dataset, will display the progress

of the calculation and the display Calculation complete once all data in Values have been

processed.

Using real-world example models
We include one script (example_2.py) that reproduce the non-parametric Bayesian network

and the sample based conditioning case number 6 of the article: “Reliability analysis of

reinforced concrete vehicle bridges columns using non-parametric Bayesian networks”

(https://doi.org/10.1016/j.engstruct.2019.03.011). Its corresponding datasets:

(i)Concrete_vehicle_bridge_column.csv, (ii)Samp_based_Case_6.csv and

(iii)UNINET_BN_Rank_corr_mat.txt are included.

https://doi.org/10.1016/j.engstruct.2019.03.011

15

If the user is interested in other examples, please have a look at the BANSHEE Quick Guide to

get a feeling of the real life examples. The references to the papers of this real life examples can

be found in “BANSHEE–A MATLAB Toolbox for Non-Parametric Bayesian Networks”. The

examples presented there are used in the same way, similar to the inference function. The

predict_river_discharge is highlighted in a wrapper script example_hydro_simulation.

It computes and visualizes river discharges for an example dataset of Kingston river gauge in

London, United Kingdom. All models have example datasets for inference provided.

