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Preface 
This short guide was written to enable users an easier start with the PY_BANSHEE package. 

It has the same structure as the quick guide for BANSHEE, the MATLAB equivalent toolbox. 

It is not a step-by-step guide, but rather clarifies the main options for users to apply the 

package in their Python scripts. We recommend to read it in combination with our paper 

“BANSHEE–A MATLAB Toolbox for Non-Parametric Bayesian Networks” and the update 

paper “Update (1.2) to BANSHEE-A MATLAB toolbox for Non-Parametric Bayesian Networks 

and Python-based version (1.0) PY_BANSHEE”. 

Requirements 
A Python environment in which the package can be installed using pip. The package was tested 

with a Python 3.9.7 virtual environment built with Anaconda, but should work with some older 

versions as well. 

Installation 
In the command prompt, activate the virtual environment (create a new one if necessary) in 

which the PY_BANSHEE package will be installed. The package can also be installed in the 

base environment. However this is discouraged particularly for Anaconda, as a ‘pip install’ 

might conflict with other packages present that were already installed using ‘conda install’. Use 

pip install py-banshee to install PY_BANSHEE and its dependencies.  

The package can be updated by running the same command. If working in a virtual 

environment, please make sure the package graphviz is also installed there. Graphviz is the 

python package that is used to visualize the NPBN (function bn_visualize). If you want to use 

this function, besides the python package graphviz also the Graphviz software should be 

installed. 

For Windows: 

1. Install windows package from: https://graphviz.org/download/ (Linux and Mac 

instructions can be found here as well) 

2. Install python graphviz package 

3. Add 'bin' folder to User path in environment variables manager (e.g: C:\Program Files 

(x86)\Graphviz2.38\bin) 

4. Add location dot.exe to System Path (e.g: C:\Program Files 

(x86)\Graphviz2.38\bin\dot.exe) 

Overview of the package 
BANSHEE has two components: 

 Six function scripts for implementing and analyzing non-parametric Bayesian 

Networks (NPBN); 

 Three scripts containing example applications of the NPBN functions, intended for 

learning how to use the package and NPBN method in general; example_3.py is the 

Python equivalent of example.m in the MATLAB Toolbox BANSHEE. 
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Each function has an extensive description in its header, which is also accessible through 

Python’s help function, e.g.: 

help(inference) # access help for function inference 
 

The ensuing help text presents all arguments and options of each PY_BANSHEE function and 

provides background information. 

Using the package 
When using the package for the first time, it is recommended to run example_3.py, a script 

that highlights the use of all five function scripts. This section contains information on how to 

use each function illustrated by each step of the example_3.py script. 

Creating DAGs of new NPBN models 
NPBN models are largely expert knowledge-driven models. They are intended to recreate real-

life interactions in a probabilistic framework. The structure could still be learned from the data 

using an iterative approach. In the first step, a simple rank correlation matrix can help to 

identify the first arc between a variable of interest and an explanatory variable (according to 

the user’s designation of those). It can be generated with a function from the pingouin package 

pairwise_corr for a pandas DataFrame data: 

RHO=pg.pairwise_corr(data,method='spearman') 
 

Further arcs are added by the user (using expert knowledge or the unconditional correlations) 

and then running the bn_rankcorr function from PY_BANSHEE. Plotting the BN rank 

correlation matrix and visualizing the directed acyclic graph (DAG) with the (conditional) 

correlations with bn_visualize allows identifying arcs for which the correlation is very low. 

These arcs could be removed and the correlation matrix recalculated to obtain new 

(conditional) correlations in the BN. The iterative process can be combined with the diagnostic 

tools of the toolbox (primarily gaussian_distance) and validation of the BN’s predictions 

obtained through inference function, as shown in the example_3.py script. The most 

important feature of the DAG that has to be maintained is the lack of circular connections 

between variables (it has to be acyclic). 

Example 

The example_3.py script employs a dataset cities.csv, which contains data on nine quality-

of-life indicators in 329 cities in the United States. This file can be downloaded from the Github 

repository (https://github.com/mike-mendoza/py_banshee ). In the first step, data are 

loaded: the DataFrame data contains the numerical data, with nine variables in columns and 

a row of data per city. The column headers contain the variable names, which is useful to have 

for visualizing the NPBN and other analyses (default names are assigned if names are not 

specified). The purpose of the model is to use different indicators of quality of life and predict 

the level of personal safety in American cities.  

  

https://github.com/mike-mendoza/py_banshee
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The data are prepared as follows: 

# Set random seed to obtain the same inference results every run, for  
# research purposes (used by sampling in function inference from prediction.py) 
np.random.seed(123) 
 
# Define location of data file 
data = pd.read_csv(‘cities.csv') 
 
# Define name of output figure with BN; used by bn_visualize 
fig_name = 'bn_cities' 
 
# Select the columns to use in the NPBN 
columns_used=[0, 6, 7, 8, 3]  # climate, arts, recreation, economics,  
                                # safety 
data = data.iloc[:,columns_used]  
 
# Extract the variable names 
names = list(data.columns) 
 
# Extract number of nodes from data 
N = data.shape[1]  
 

After the data are ready, the structure of the NPBN is defined (the DAG). The DAG is 

constructed through expert knowledge supported by BN rank correlation matrix and the 

diagnostic tools. In the code, it is defined as a list parent_cell. Each cell of the array refers to 

one node (variable) of the DAG and lists all the parent nodes (empty if there are no parents). 

In our example, the DAG (Fig. 3) is as follows: 

# Defining the structure of the BN 
parent_cell = [None]*N 
parent_cell[0] = []             # climate (no parents) 
parent_cell[1] = [2]          # arts (parent node: recreation) 
parent_cell[2] = [3, 0]       # recreation (parent nodes: economics, climate) 
parent_cell[3] = []             # economics (no parents) 
parent_cell[4] = [1, 2, 3, 0]  # safety (parents: all other variables)  

BN Rank Correlation Matrix (bn_rankcorr) 
Purpose 

R = bn_rankcorr(parent_cell, data, var_names=[], is_data=True, plot=False) 

computes the BN rank correlation matrix, which quantifies the strength of the (conditional) 

dependency between variables. 

Input 

parent_cell A list containing the structure of the BN (directed acyclic graph – DAG). Each 

list element is a node of the BN and contains a list of the node's parents, defined as a list with 

reference to particular cell(s). An example of the DAG is shown in the previous section, 

“Creating DAGs of new NPBN models”.  



5 
 

data A pandas DataFrame containing data for quantifying the NPBN. Data for each node 

need to be located in columns in the same order as specified in parent_cell. The number of 

columns need to equal the number of nodes specified in parent_cell. Optionally, a list of rank 

correlations can be used, one conditional correlation per arc, following the same structure as 

parent_cell. This second option is intended for use in a User-Defined Random Model 

(UDRM). An example of a UDRM is shown in example1.py script.  

is_data Specifies the input data type: 

False – list of lists data contains rank correlations (for UDRM models); 

True – pandas DataFrame data contains actual data. 

plot (optional parameter). A plot of correlation matrix R can be displayed: 

False - do not create a plot (default); 

True - create a plot. 

var_names (optional parameter). A list containing names of the nodes for the plot; should 

be provided if plot==True. 

Output 

R An n-by-n numpy.ndarray with the Spearman’s (conditional) rank correlations, where 

n is the number of nodes, as specified in parent_cell. 

Example 

The DAG defined in parent_cell variable, the  DataFrame Data and (optionally) a list of 

variable names names are inputs for the bn_rankcorr function. The inputs are composed as 

follows: 

R = bn_rankcorr(parent_cell,      # structure of the BN 
              data,               # matrix of data 

var_names = names        # names of variables 
is_data = True,          # matrix data contains actual data 

              plot = True,             # create a plot (False= don't create plot) 
                   

The value of is_data is True, as we provide a matrix of actual data to quantify the model. 

Further, the value of plot is also True, as we want the function to generate a plot. 

Running the function returns a BN correlation matrix R and a plot (Fig. 1). 
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Figure 1: BN rank correlation matrix generated with bn_rankcorr after running example_3.py script. 

Visualize the BN (bn_visualize) 
Purpose 

bn_visualize(parent_cell, R, names, data=None, fig_name="") creates a directed 

digraph presenting the structure of nodes and arcs of the Bayesian Network (BN), also 

displaying the (conditional) rank correlations at each arc. 

Input 

parent_cell A list containing the structure of the BN (directed acyclic graph – DAG). Each 

cell is a node of the BN and contains a list of the node's parents, defined as a vector with 

reference to particular cell(s). An example of the DAG is shown in the previous section, 

“Creating DAGs of new NPBN models”.  

R An n-by-n matrix with the Spearman’s (conditional) rank correlations, where n is the 

number of nodes, as specified in parent_cell. This variable should be generated with 

bn_rankcorr function (see section “BN Rank Correlation Matrix”). 

names A list containing names of the nodes for the plot 

data the same data that can be used as input in bn_rankcorr. When this argument is given 

as input, the nodes in the visualization contain the marginal distribution of the data within 

each node. 

fig_name Name extension of the .png file with the NPBN that is created: 

BN_visualize_'fig_name'.png. The file is saved in the working directory. 
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Output 

The function doesn’t provide an output variable. Instead, it generates a plot presenting the 

DAG: nodes, variables and (conditional) rank correlations and, if data is specified, also the 

marginal distributions. 

Example 

The DAG from the cities example can be visualized using bn_visualize function. The only 

required arguments are parent_cell, R and names from the previous steps. Also fig_name 

is passed into the function to save the figure: 

bn_visualize(parent_cell,            # structure of the BN 
             R,                      # the rank correlation matrix (function 1) 
             data.columns,           # names of variables 
             fig_name = fig_name)      # figure name  

 

Running the function returns a plot containing nodes (red dots with names of variables), the 

arcs with a defined direction, and the value of the (conditional) rank correlations on the arcs 

(Fig. 2). 

 

Figure 2: Quantified DAG generated with bn_visualize after running example_3.py script. 

 

By adding and changing the slightly (so the first file is not overwritten): 

bn_visualize(parent_cell,              # structure of the BN 
             R,                        # the rank correlation matrix (function 1) 
             data.columns,             # names of variables 
             data = data,    # DataFrame with data 
             fig_name = fig_name + '_margins')      # figure name  

we come to a plot with marginal distributions (Fig.3). 
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Figure 3: Quantified DAG with marginals generated with bn_visualize after running example_3.py 

script. 

 

Diagnostic test 1: Goodness-of-fit test for copulas (cvm_statistic) 
Purpose 

M = cvm_statistic(DATA, names, plot=False, fig_name="") calculates the 

goodness-of-fit for pairs of variables, using Cramer-von Mises statistic. 

Input 

DATA A DataFrame containing data for quantifying the NPBN. Each column is one variable. 

plot A plot of highlighting the optimal copula per pair of variables can be displayed: 

False - do not create a plot; 

True - create a plot. 

names A list containing names of the nodes for the plot. 
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fig_name Name extension of the .png file with the statistics that are created:  

cvm_statistics_'fig_name'.png. The file is saved in the working directory.     

Output 

M A matrix containing the following columns: 

[1]: first variable in the pair (column number in the matrix DATA); 

[2]: second variable in the pair (column number in the matrix DATA); 

[3]: Spearman's rank correlation between variables; 

[4]: Cramer-von Mises statistic for Gaussian copula; 

[5]: Cramer-von Mises statistic for Gumbel copula; 

[6]: Cramer-von Mises statistic for Clayton copula; 

[7]: Cramer-von Mises statistic for Frank copula. 

The Cramer-von Mises statistic measures the sum of squared difference between the 

parametric and empirical copulas. 

Example 

The cvm_statistic can be used to analyse some of the underlying assumptions of the method. 

Firstly, the assumption that the bivariate dependencies between variables can be modelled 

with a Gaussian (normal) copula. The function cvm_statistic computes the sum of squared 

differences between the parametric and empirical copulas. The lower value of the resulting M 

metric, the better fit between the parametric and empirical copulas is achieved. The only 

required argument is the matrix of data used in the previous steps: 

M = cvm_statistic(data,                       # DataFrame with data 
                    names = data.columns,  # names of variables 

   plot = True,                   # create a plot (False = don't create plot) 
                    fig_name = fig_name)    # figure name  

 

Running the script will result in the following graph (Fig. 4): 
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Figure 4: Diagnostic results for four copula types obtained using cvm_statistics after running 

example_3.py script. 

The results of the diagnostic routines M highlight that the Gaussian copula is in the majority of 

cases the most suitable for representing the dependency between variables, especially for the 

variable of interest (safety).  

 

Diagnostic test 2: Distance between Gaussian densities (gaussian_distance) 

Purpose 

D_ERC,B_ERC,D_BNRC,B_BNRC=gaussian_distance(R,DATA,SampleSize_1=1000, 

SampleSize_2=1000,M=1000,Plot=False, Type="H",fig_name="") computes the d-

calibration score, which compares the distance between both the empirical and BN rank 

correlation matrices and the empirical normal rank correlation matrix. 

Input 

R An n-by-n numpy.ndarray with the Spearman’s (conditional) rank correlations, where 

n is the number of nodes. This variable should be generated with bn_rankcorr function (see 

section “BN Rank Correlation Matrix”). 
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DATA A DataFrame containing data for quantifying the NPBN. Data for each node need to be 

located in columns in the same order as specified in R. The number of columns need to be equal 

to the number of nodes specified in R. 

SampleSize_1 (optional parameter). The number of samples to be drawn in the resampling 

of the distributions in the test d-Cal(ERC,NRC). 1000 is the default.  

SampleSize_2 (optional parameter). The number of samples to be drawn in the resampling 

of the distributions in the test d-Cal(NRC,BNRC). 1000 is the default.  

M (optional parameter). Number of iterations of calculating the d-calibration scores to 

compute the confidence interval of the determinant of the sampled random distribution. 1000 

is the default. 

Plot (optional parameter). A plot of the d-calibration scores can be displayed: 

False - do not create a plot (default); 

True - create a plot. 

Type (optional parameter). A string that sets the type of measure used to calculate the 

distance. Available methods are: 

'H'       Hellinger distance (default); 

'KL'    Symmetric Kullback–Leibler divergence; 

'B'      Bhattacharyya distance; 

'G'      G distance from Abou Moustafa et al. (2010)1. 

fig_name Name extension of the .png file with the d-calibration scores that is created: 

gaussian_distance_'fig_name'.png. The file is saved in the working directory.    

 

Output 

D_ERC   Value of the d-calibration score for the empirical rank correlation matrix of DATA 

D_BNRC Value of the d-calibration score for the Bayesian Network rank correlation matrix R. 

B_ERC   Quantile range (5th and 95th percentile) of the distribution of the determinant of the 

empirical distribution of DATA transformed to standard normal. 

B_BNRC  Quantile range (5th and 95th percentile) of the distribution of the determinant of the 

empirical distribution of the Bayesian Network. 

                                                            
1 Abou Moustafa, K.T., De La Torre, F., and Ferrie, F. P. (2010). Designing a Metric for the Difference between 
Gaussian Densities. In: Angeles et al., "Brain, Body and Machine. Advances in Intelligent and Soft Computing." 
Berlin: Springer, 57-70. 
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The score is 1 if the matrices are equal and 0 if one matrix contains a pair of variables perfectly  

correlated, and the other one does not, and the score will be “small” as the matrices differ from 

each other elementwise. 

Example 

The second diagnostic test is done with the function gaussian_distance, which requires two 

arguments from the cities example, namely the rank correlation matrix R and the dataset data.  

D_ERC,B_ERC,D_BNRC,B_BNRC = gaussian_distance( 
                                R,         # the rank correlation matrix  
                                data,      # DataFrame with data 
                                4000,     # number of samples drawn d-Cal(ERC,NRC) 
                                400,       # number of samples drawn d-Cal(NRC,BNRC) 
                                1000,    # number of iterations to compute CI 
                                Plot = True,         # create a plot (0=don't create plot) 
                                Type = 'H',       # take Hellinger distance (default) 
                               fig_name=fig_name) # figure name  
 

Three additional arguments that can be specified. In this example,  

 
SampleSize_1 = 4000, SampleSize_2 = 400, M = 1000 

 

indicates that the function will draw 4000 samples of the normal distribution, and then 

perform 1000 iterations to obtain the distribution of the d-calibration score. This option was 

added as the test is sensitive to the number of samples drawn as well as the number of iterations 

and is rather severe for large datasets. A plot can be generated (Fig. 5) and finally the distance 

metric can be specified out of four metrics implemented in the code. By default, Hellinger 

distance is used ('H'). 

 

 
Figure 5: The d-calibration score of the BN model obtained using gaussian_distance after running 

example_3.py script. 

The plot shows that the d-calibration score of the empirical rank correlation matrix (D_ERC) is 

inside the 90% confidence interval of the determinant of the empirical normal distribution 

(B_ERC) (Fig. 5 left). The d-calibration score of the BN's rank correlation matrix (D_BNRC) is 

well within the 90% confidence interval of the determinant of the random normal distribution 
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sampled for the same correlation matrix (B_BNRC; Fig. 5 right). This means that while the joint 

normal copula is not a good assumption for the whole dataset, it is valid for the particular 

configuration of the BN model. 

Inference of the BN (inference) 
Purpose 

F = inference(Nodes,Values,R,DATA,OUTPUT=”full”,SampleSize=1000, 

Interp=”next”, empirical_data=True,distributions=[],parameters=[]) makes 

inference of the BN model, i.e. conditionalizes nodes of the model in order to obtain 

conditional distributions, which can be used as predictions for the values of the other nodes 

without observed values. 

Input 

Nodes  A vector defining nodes to be conditionalized. The values of the vector define 

the variables in the same order as in matrix R. At least one node has to be left out from Nodes 

in order to make inferences at least for this one node.  

Values A DataFrame containing data on which the inference will be based upon. Data 

for each node need to be located in columns in the same order as specified in Nodes and R. The 

number of columns need to equal the number of nodes specified in Nodes and R. 

R  An n-by-n numpy.ndarray with the Spearman’s (conditional) rank correlations, 

where n is the number of nodes, as specified in parent_cell. This variable should be 

generated with bn_rankcorr function (see section “BN Rank Correlation Matrix”). 

DATA  A matrix containing data for quantifying the NPBN. Data for each node need to 

be located in columns in the same order as specified in Nodes, Values and R. The number of 

columns need to be equal the number of nodes specified in Nodes, Values and R. 

OUTPUT          (optional parameter). A string setting the type of output of the function: 

‘full'      provides a list with the conditional empirical distributions (default). 

'mean'       provides a matrix with the mean of the conditional empirical distributions. 

'median'    provides a matrix with the median of the conditional empirical distributions. 

SampleSize  Number of samples drawn when conditionalizing the NPBN. 1000 is the default. 

Interp A string with the name of the interpolation method. The options are the same 

as in MATLAB’s interp1 function: ‘linear’, ‘nearest’, ‘nearest-up’, ‘zero’, ‘slinear’, 

‘quadratic’, ‘cubic’, ‘previous’, or ‘next’(default) 

empirical_data True if the data are empirical observations, False if data are parametric 

distributions 

distributions  A list with the names of the distributions for each node 

parameters A list with the corresponding parameters of the distributions 
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Output 

F  By default, provides a list with the conditional empirical distributions for each 

row in Values and each node not specified in Nodes. 

Example 

Once the BN model was configured and analysed, it can be used to make inference. The 

function inference requires four arguments, of which two are used in the cities example: the 

rank correlation matrix R and the dataset Data. The argument Nodes defines which nodes are 

to be conditionalized, according to the numbering defined in the DAG by the parent_cell 

variable. Per each node conditionalized, a numeric value has to be provided in the variable 

Values in the same order as specified in Nodes. For example, if R is a 5-by-5 matrix,  

Nodes = [0, 2, 4] 

 

will conditionalize the BN using the first, third and fifth node and make inference of the second 

and fourth node. Notice that in contrast to MATLAB (indexing starts at one (1)), indexing in 

Python starts at zero (0). 

Multiple rows of data (i.e. different observation records) in Values are possible. The 

configuration of those arguments in the cities example is: 

condition = [0, 1, 2, 3]        # conditionalized variables, all except for safety (predict) 
values = data.iloc[:,condition].to_numpy() # data for conditionalization  
 

The full inference function is written as follows: 

F = inference(condition,         # nodes that will be conditionalized 
              values,             # information used to conditionalize the 
                                  # nodes of the NPBN 
              R,                  # the rank correlation matrix  
              data,               # DataFrame with data 
              Output = 'mean')     # type of output data  

In this setting, the output variable F will contain only the mean value of the predictions of the 

fifth node (safety), computed based on 1,000 samples of the BN, with the empirical marginal 

distributions interpolated using the ‘next’ method. 

Computations made with inference can be e.g. used to compare prediction of the model with 

observations. It should be noted that the function, for larger dataset, will display the progress 

of the calculation and the display Calculation complete once all data in Values have been 

processed. 

Using real-world example models 
We include one script (example_2.py)  that reproduce the non-parametric Bayesian network 

and the sample based conditioning case number 6 of the article: “Reliability analysis of 

reinforced concrete vehicle bridges columns using non-parametric Bayesian networks”  

(https://doi.org/10.1016/j.engstruct.2019.03.011). Its corresponding datasets: 

(i)Concrete_vehicle_bridge_column.csv, (ii)Samp_based_Case_6.csv and 

(iii)UNINET_BN_Rank_corr_mat.txt are included.  

https://doi.org/10.1016/j.engstruct.2019.03.011
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If the user is interested in other examples, please have a look at the BANSHEE Quick Guide to 

get a feeling of the real life examples. The references to the papers of this real life examples can 

be found in “BANSHEE–A MATLAB Toolbox for Non-Parametric Bayesian Networks”. The 

examples presented there are used in the same way, similar to the inference function. The 

predict_river_discharge  is highlighted in a wrapper script example_hydro_simulation. 

It computes and visualizes river discharges for an example dataset of Kingston river gauge in 

London, United Kingdom. All models have example datasets for inference provided.  


