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Abstract

This report discusses the details of implementing the momentum budget
in the Dutch Atmospheric LES (DALES) code version 3.2 following the
formulation proposed by Gao et al. (1994).

1 User information

In the DALES code V3.2 an additional subroutine (modstress.f90) has been
included. Moreover, a section called NAMSTRESS has been created in the
namoptions.exp file which include a switch (lstress) to calculate all the terms
of the stress tensor. It’s important to notice that the subroutine calculates
and writes, in ASCII or NetCDF, the file stressbudget.exp the budget for the
elements u′2, u′v′, u′w′, v′2, v′w′, and w′2 of the stress tensor. Finally, at the
end of the file the sum of the elements of the diagonal divided by 2 is written.
This corresponds to the TKE budget calculated in subroutine modbudget.f90.

2 Momentum budget

The prognostic equation for the turbulent fluctuations, u′i, reads (Stull, 1988,
chapter 4, eq. 4.1.1):

∂u′i
∂t

+uk
∂u′i
∂xk

+u′k
∂ui

∂xk
+u′k

∂u′i
∂xk

= δi3

(
θ′v
θv

)
g+fcεik3u

′
k−

1
ρ

∂p′

∂xi
+

(
ν

∂2u′i
∂x2

k

)′
+

∂(u′iu
′
k)

∂xk
.

By using the condition of incompressibility, ∂u′k/∂xk = 0, this equation can
be written:
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Since we are using an LES model that uses a subgrid model that is expressed

in terms of a subgrid-scale viscosity (Heus et al., 2010), the ν in the above
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equation should be interpreted as the subgrid-scale viscosity (with the molecular
viscosity being negligible).

From this equation the different stresses can be built up. The next step is
to multiply 1 by the fluctuation u′j and perform Reynolds averaging. Note that
the last term in 1 dissapears because u′i = 0 and ∂/∂xk = 0 for k = 1, 2:
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The above equation can also be rewritten with the i and j indices inter-
changed, giving:
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Then by adding 2 and 3 these can be combined, and by using the product rule,
the equation for the tendency of the momentum flux u′iu

′
j is obtained. The

equation reads:
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The various terms in equation 4 are:

a tendency/storage

b advection
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c shear production

d transport turbulent diffusion

e buoyancy production/destruction

f Coriolis production/destruction

g pressure-gradient velocity interaction

h viscous dissipation

The essential point in the method of Gao et al. (1994) is that the discretiza-
tion of 4 will give different results than discretization of the sum of 2 and 3.

3 Discretization

In order to discretize the sum of 2 and 3 we have to take into account the
discretization of the terms in the momentum budget equation (4). The rate
equation for u′i should be discretized in the same way as that of the instantaneous
velocity. Therefore, 2 and 3 are the starting point for the discretization. Since,
equations 2 and 3 are identical in form, we will only discuss 2:
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The DALES uses a finite volume discretization with a staggered grid Harlow
and Welch (1965) (see figure 1).
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Figure 1: Arrangement of variables on a staggered grid: pressure (and other scalars
like potential temperature, humidity, ...) are located in the center of the cell, velocity
components are displaced in the upstream direction of the component.

The turbulence stresses in 2 are defined at the edges of the grid box where
the faces of the ui and uj velocity intersect. Below, on the the terms in 2 are
dealt with, but the total budget term will consist of a term originating from 2
and one from 3. See figure 2 to understand how the off-diagonal stresses are
interpolated to cell edges.

Figure 2: Interpolation of off-diagonal stresses to cell edges.

For all the terms of the stress budget, the codification at DALES of u′1u
′
1,
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u′1u
′
2 and u′1u

′
3 stress elements are written as:

dumfield=2.*u0_dev*u_term

dumfield(2:i1,2:j1,:) =
0.25*(u0_dev(2:i1,2:j1,:)+u0_dev(2:i1,1:jmax,:))*&

(v_term(2:i1,2:j1,:)+v_term(1:imax,2:j1,:))+&
0.25*(u_term(2:i1,2:j1,:)+u_term(2:i1,1:jmax,:))*&

(v0_dev(2:i1,2:j1,:)+v0_dev(1:imax,2:j1,:))

dumfield(2:i1,2:j1,2:k1) =
0.25*(u0_dev(2:i1,2:j1,2:k1)+u0_dev(2:i1,2:j1,1:kmax))* &

(w_term(2:i1,2:j1,2:k1)+w_term(1:imax,2:j1,2:k1))+ &
0.25*(u_term(2:i1,2:j1,2:k1)+u_term(2:i1,2:j1,1:kmax))* &

(w0_dev(2:i1,2:j1,2:k1)+w0_dev(1:imax,2:j1,2:k1)),

where u0_dev=u′1, v0_dev=u′2, w0_dev=u′3, i1 = imax+1, j1 = jmax+1, and
k1 = kmax+1. u_term, v_term, and w_term are calcualted with the advection
subroutines of the model and are different for each particular term of the stress
budget.

3.1 Advection (b1)

The advection term, u′j
∂uku′i
∂xk

, is identical zero if the mean vertical velocity (w)is
zero, and the flow is horizontally homogeneous.
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.

3.2 Shear production (c1)
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∂u′kui
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∂xk
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be interpolated to the ij edge by averaging in the j-direction. u′j is available at
the uj-point and is interpolated to the ij edge by averaging in the i-direction.

For this term, u_term=∂u′ku1
∂xk
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, w_term=∂u′ku3
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.

3.3 Turbulent diffusion (d1)

In the term u′j
∂u′ku′i
∂xk

, the term ∂u′ku′i
∂xk

is available at the ui-point and needs to be
interpolated to the ij edge by averaging in the j-direction. Again, u′j is available
at the uj-point and is interpolated to the ij edge by averaging in the i-direction.

The codification of this term implies u_term=∂u′ku′1
∂xk

, v_term=∂u′ku′2
∂xk

, w_term=∂u′ku′3
∂xk

.

3.4 Buoyancy production/destruction (e1)

In the term u′jδi3

(
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)
g, the term δi3

(
θ′v
θv

)
g is available at the ui-point and is

interpolated to the correct edge by averaging in the j-direction. u′j is available
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at the uj-point and is interpolated to the ij edge by averaging in the i-direction.
This term has only component in the z-direction. The w_term is codified as:

do k=1,kmax
thv0h_avl(k) = sum(thv0h(2:i1,2:j1,k))/rslabs
enddo

call MPI_ALLREDUCE(thv0h_avl, thv0h_av, k1, MY_REAL, &
MPI_SUM, comm3d,mpierr)

do k=1,k1
w_term(:,:,k) = (grav/thvs) * (thv0h(2-ih:i1+ih,2-jh:j1+jh,k) - thv0h_av(k))
enddo

call cyclicx(w_term)

where k1 = kmax + 1, grav is the acceleration of gravity and thvs is mean
virtual potential temperature in the boundary layer defined in modsurface.f90.

3.5 Coriolis production/destruction (f1)

In the term u′jfcεik3u′k, fcεik3u
′
k is defined at the ui-point and is interpolated to

the correct edge by averaging in the j-direction. u′j is available at the uj-point
and is interpolated to the ij edge by averaging in the i-direction.

In this case:

u_term(2:i1,2:j1,1:kmax) = &
+(v0_dev(2:i1,2:j1,1:kmax)+v0_dev(2:i1,3:j2,1:kmax) &
+ v0_dev(1:imax,2:j1,1:kmax)+v0_dev(1:imax,3:j2,1:kmax))*om23*0.25 &
-(w0_dev(2:i1,2:j1,1:kmax)+w0_dev(2:i1,2:j1,2:k1) &
+w0_dev(1:imax,2:j1,2:k1)+w0_dev(1:imax,2:j1,1:kmax))*om22*0.25

v_term(2:i1,2:j1,:) = &
-(u0_dev(2:i1,2:j1,:)+u0_dev(2:i1,1:j1-1,:)&
+ u0_dev(3:i2,1:j1-1,:)+u0_dev(3:i2,2:j1,:))*om23*0.25

do k=2,k1
w_term(2:i1,2:j1,k) = &
om22 * 0.25*((dzf(k-1) * (u0_dev(2:i1,2:j1,k-1) + u0_dev(3:i2,2:j1,k-1))&
+ dzf(k) * (u0_dev(2:i1,2:j1,k) + u0_dev(3:i2,2:j1,k))) / dzh(k))
enddo

where i2 = imax+2, j2 = jmax+2 and om22 = 2Ω cos φ, and om23 = 2Ω sin φ
are already defined in the subroutine modglobal.f90.
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3.6 Pressure-gradient velocity interaction (g1)

In the term u′j
1
ρ

∂p′
∂xi

, 1
ρ

∂p′

∂xi
is defined at the ui-point and is interpolated to the

correct edge by averaging in the j-direction. u′j is available at the uj-point and
is interpolated to the ij edge be averaging in the i-direction.

For this case:

u_term(2:i1,2:j1,1:k1) = -(p(2:i1,2:j1,1:k1)-p(1:imax,2:j1,1:k1))*dxi
v_term(2:i1,2:j1,1:k1) = -(p(2:i1,2:j1,1:k1)-p(2:i1,1:jmax,1:k1))*dyi

do k=2,k1
w_term(2:i1,2:j1,k) = -(p(2:i1,2:j1,k)-p(2:i1,2:j1,k-1))/dzh(k)
enddo

where dxi = 1/∆x and dyi = 1/∆y.

3.7 Viscous dissipation (h1)

In the term u′jν
∂2u′i
∂x2

k
, ν

∂2u′i
∂x2

k
is defined at the ui-point and is interpolated to the

correct edge by averaging in the j-direction. u′j is available at the uj-point and
is interpolated to the ij edge by averaging in the i-direction. Note that in the
LES model, ν includes (or in fact: only includes) the subgrid viscosity.

The calculation of the u_term, v_term and w_term is as follows:

call diffu(u_term)
call diffv(v_term)
call diffw(w_term)

call cyclicx(u_term)
call cyclicx(v_term)
call cyclicx(w_term)

do k=1,k1
uterm_avl(k) = sum(u_term(2:i1,2:j1,k))/rslabs
vterm_avl(k) = sum(v_term(2:i1,2:j1,k))/rslabs
wterm_avl(k) = sum(w_term(2:i1,2:j1,k))/rslabs

enddo

call MPI_ALLREDUCE(uterm_avl, uterm_av, k1, MY_REAL, &
MPI_SUM, comm3d, mpierr)

call MPI_ALLREDUCE(vterm_avl, vterm_av, k1, MY_REAL, &
MPI_SUM, comm3d, mpierr)

call MPI_ALLREDUCE(wterm_avl, wterm_av, k1, MY_REAL, &
MPI_SUM, comm3d, mpierr)
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do k=1,k1
u_term(:,:,k) = u_term(:,:,k) - uterm_av(k)
v_term(:,:,k) = v_term(:,:,k) - vterm_av(k)
w_term(:,:,k) = w_term(:,:,k) - wterm_av(k)

enddo
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