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Force Field development

QuickFF program is used to derive force fields for metal–organic frameworks from ab initio data

of the equilibrium structure as input (http://molmod.github.io/QuickFF/index.html#).

The energy expression for the force field including covalent and non-covalent interactions

used in QuickFF is:

𝑉 𝐹𝐹 = 𝑉𝑏𝑜𝑛𝑑 + 𝑉𝑏𝑒𝑛𝑑 + 𝑉𝑜𝑜𝑝𝑑 + 𝑉𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝑉𝑐𝑟𝑜𝑠𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑉𝑐𝑜𝑣

+ 𝑉𝑒𝑖 + 𝑉𝑣𝑑𝑊⏟⏟⏟⏟⏟
𝑉𝑛𝑜𝑛𝑐𝑜𝑣

(1)

The functional form for each contribution in equation 1 is mentioned in previous literature on

development of QuickFF program.1 Specific to this work, the methodology for obtaining the
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force field is described below. The general steps involved with FF development for predicting

the rotational linker dynamics is summarized below.

Step 1: Generation of ab initio (AI) data for input to QuickFF

program

1. Covalent interactions: QuickFF requires ab initio equilibrium geometry and ab initio

hessian at equilibrium to estimate the parameters in the covalent contributions of the

force field energy expression. We used VASP2,3 to obtain the equilibrium structure by

geometry optimization, followed by performing a frequency calculation to obtain the

hessian matrix (analytical second order derivatives of energy with respect to cartesian

coordinates) and ab initio forces. With VASP, we worked with a single (111) unit cell,

where the cutoff energy of 600 eV, Perdew Becke and Ernzerhof (PBE)4[GGA exchange-

correlation functional and k-points gamma mesh of 6 × 3 × 2 was used to obtain the

hessian matrix with considerable accuracy. D3 dispersion interactions together with the

Becke-Johnson damping scheme (DFT-D3(BJ)) were included.5,6 VASP-recommended

projector augmented wave (PAW) pseudopotentials were considered for all elements in

the MOF.7 The electronic (ionic) convergence criteria is 10−8 (10−7) eV. The output

file from frequency calculation “vasprun.xml” contains all the structural information

along with the hessian matrix which will be one of the inputs to QuickFF software.

2. The electrostatic interactions are modelled by coulomb interactions between Gaus-

sian charge distributions. The atomic charges 𝑞𝑖 are obtained from Minimal Basis

Iterative Stockholder (MBIS) partitioning scheme.8

𝑉𝑒𝑖 = 1
2

∑
𝑖,𝑗=1,𝑖≠𝑗

𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
erf (

𝑟𝑖𝑗

𝑑𝑖𝑗
) (2)

MBIS scheme is implemented in a package called DensPart9 that is especially used for

periodic structures to get the MBIS charges. DensPart works with GPAW10–12 output
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files. We performed a quick single point calculation with GPAW on the equilibrium

structure obtained in VASP and “output.gpw” is obtained. This is then used with scripts

given in DensPart package to convert GPAW files to DensPart readable “density.npz”

file. The output “results.npz” file from DensPart is then used with QuickFF to generate

the FF with inclusion of electrostatic interactions.

3. Van der waals interactions are described by MM3 model, parameters are taken

from Allinger et al.13 and added manually into the Force field file later.

𝑉𝑣𝑑𝑤 = 𝜖𝑖𝑗 [1.84.105exp (−12 𝑟
𝜎𝑖𝑗

) − 2.25 (
𝜎𝑖𝑗

𝑟
)

6
] (3)

The parameters 𝜎𝑖𝑗 and 𝜖𝑖𝑗 are the equilibrium distance and depth of the potential.

These parameters are determined with mixing rules for interaction between atom 𝑖 and

𝑗:

𝜎𝑖𝑗 = 𝜎𝑖 + 𝜎𝑗

𝜖𝑖𝑗 = √𝜖𝑖𝜖𝑗

Step 2: Generation of Force field using QuickFF program

Apart from the hessian matrix in “vasprun.xml” file, atomic charges from DensPart “re-

sults.npz” file and van der waals parameters, another file with the system information

MolMod.chk file is obtained from “vasprun.xml” by providing atom rules in ATSELECT

language (https://molmod.github.io/yaff/ug_atselect.html). With all the needed files,

an initial FF can be generated by following the procedure in QuickFF documentation. Please

note, initially the default settings for the QuickFF were used for deriving the force field.
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Figure S1: Figure showing labelled atom types in the asymmetric unit of NO2-MIL-53 used
for FF generation, FF validation and MD simulations. Elements notation from color are:
blue: Aluminum, gray: Carbon, red: Oxygen, white: Hydrogen, lavender: Nitrogen.

Step 3: Rigid rotational scan with Ab Initio (AI) and generated FF

In this work, we are specifically interested in rotational freedom of linkers i.e., change in tor-

sional value of specific dihedrals O_CA C_CA C_PC C_N and O_CA C_CA C_PC C_PH

that changes with the rotation of terephthalate linker with respect to plane containing Al-OH

linkages or the (011) plane. To be able to simulate the rotational dynamics accurately,

torsional terms for these dihedrals in the previously generated FF in Step2 are replaced, and

new torsional terms are added. The new terms are obtained by performing a rigid rotational

energy scan of structures at different configurations ranging from −180° to 180° of OCCC

dihedral angle both with AI and FF (containing all except the torsional OCCC term). The

difference in the energies (𝐸𝑂𝐶𝐶𝐶) between AI and FF (containing all except the torsional

OCCC term) rotational scans is then fitted to a cosine functional form shown in equation 5

𝐸𝑂𝐶𝐶𝐶 = 𝐸𝐴𝐼 − 𝐸𝐹𝐹 (4)

𝐸𝑂𝐶𝐶𝐶 =
𝑁𝑖

∑
𝑖=1

1
2

𝐴𝑖(1 − 𝑐𝑜𝑠(𝑀𝑖(𝜙𝑖 − 𝜙0,𝑖))) (5)

4



Parameters 𝐴𝑖 is obtained by fitting the difference in energies between AI and FF rotational

Figure S2: Figure showing rotational scan energies with Ab Initio, FF before fitting and
FF after fitting.

scans into this functional form and 𝑀𝑖 = 2, 4, 6.... The force constant 𝐴𝑖 is estimated

by minimizing the cost function method implemented in QuickFF called “boxqp” function

(http://molmod.github.io/QuickFF/_modules/quickff/tools.html#boxqp). Figure S2

shows the energies of rotational scan with Ab Initio, Force field before fitting for the OCCC

dihedral term and final FF energies after fitting for the OCCC dihedral term.

Note: All the python scripts and input/output files for each step in the FF development

are made publicly available on the data repository.
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Computational methods

Geometry Optimization and Frequency calculations

One of the force field validation methods was to compare the geometry optimized structure

with developed FF to the experimental structure, The geometry optimization for this was

done with YAFF14 (https://github.com/molmod/molmod; https://molmod.github.io/

yaff/index.html) for 2×1×1 supercell. The electrostatic interactions were calculated using

an Ewald summation with a real-space cutoff of 15 Å, a splitting parameter 𝛼 of 0.213/Å,

and a reciprocal space cutoff of 0.32/Å. Also, the van der Waals interactions were calculated

with a smooth cutoff of 15 Å. The structure was optimized with convergence criteria set to

10−8 a.u. for the RMS on the cartesian gradient, 10−6 a.u. for the RMS of difference in the

cartesian coordinates, 10−8 a.u. for the RMS on the gradient on the cell parameters and 10−6

a.u. for the RMS of the difference in the cell parameters. After the optimization, normal

mode frequencies with FF were computed using TAMkin.15

Molecular Dynamics

In this work, we did not perform any AIMD simulations of 2 × 1 × 1 supercell mentioned

in the main paper. The data from AIMD simulations which were obtained in the previous

work16 was used to obtain the free energy surface (FES) plots and compare with the FF

generated FES.

Classical MD simulations for 2×1×1, 4×2×2 and 6×2×2 supercells were all performed

with LAMMPS software (https://www.lammps.org/index.html#gsc.tab=0).17–19 Starting

from the geometry optimized DFT structure, MD simulations were performed in the (N,V,T)

ensemble with fixed size and shape of the unit cell. A time step of 0.5 fs was used in the

MD runs and temperature was controlled by a canonical sampling through Nose-Hoover

thermostat. The equilibration period for FF validation calculations with 2 × 1 × 1 supercell

was 10 ps and a production period of 1 ns for all temperatures (300 K and 450 K). For 4×2×2
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and 6 × 2 × 2 supercells, the equilibration period is 100 ps and a production period of 70 ns.

Force field (FF) Validation

Geometry Optimization

The obtained FF should accurately predict the geometry of the Nitro functionalized MIL-53

structure. For that, we compare the FF simulated cell parameters with the experimental

values of large pore structure of NO2-MIL-53 (see Table S1). The FF simulated structure

optimizes to an orthorhombic shape, in agreement with the experimental structure. The

deviation between experimental and simulated lattice parameters a, b and c is 0.2%, 6.5%

and 3.1% respectively; where deviation on b is the highest among other directions. This is

due to the inherent flexibility of the MIL-53 framework in the plane of the wine-rack motif

i.e, 𝑏𝑐 plane perpendicular to the inorganic chain. However, the overall predicted structure

from the geometry optimization with FF is similar to the experimental structure.

Table S1: Comparison of Lattice Parameters of NO2-MIL-53(Al) structure.

Lattice Parameters Experimental20 FF simulated
a [Å] 13.298 13.331
b [Å] 13.320 14.188
c [Å] 16.382 15.877
[deg] 90 90
[deg] 90 90
[deg] 90 89.98

Comparison of Force field (FF) frequencies with DFT frequencies

We perform the next validation of the FF by comparing the DFT calculated normal-mode

frequencies to that of the FF frequencies as shown in Figure S3. They show a very good

correlation at all ranges of frequencies. We further compute the Internal energy, the Helmholtz

free energy, the entropy and the heat capacity of the NO2-MIL-53 2 × 1 × 1 supercell, as

a function of temperature in the quantum-harmonic approximation using the computed
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normal mode frequencies from both DFT and FF.1 (see Figure S4) All these thermodynamic

properties are reproduced very well with FF frequencies when compared to the DFT computed

properties. Validation of the FF with geometry optimization and frequency comparison

shows the FF accurately reproduces the experimental geometries, unit cell dimensions and

frequencies of normal modes.

Figure S3: Comparison of DFT and FF calculated frequencies. Three measures of error
between DFT and force field frequencies are indicated: RMSD the root-mean-square deviation
as a measure of total error, MD the mean deviation as a measure of the systematic error,
RMSE the root-mean-square error as a measure of the non-systematic error.

𝐸(𝑇 ) =
𝑁𝜔

∑
𝑖=1

(ℏ𝜔𝑖
2

+ ℏ𝜔𝑖
𝑒𝛽ℏ𝜔𝑖 − 1

) (6)

𝐹(𝑇 ) =
𝑁𝜔

∑
𝑖=1

(ℏ𝜔𝑖
2

+ 𝑘B𝑇 ln[1 − 𝑒−𝛽ℏ𝜔𝑖 ]) (7)

𝐶𝑣(𝑇 ) = 𝑘B

𝑁𝜔

∑
𝑖=1

( ℏ𝜔𝑖
𝑘B𝑇

)
2 𝑒𝛽ℏ𝜔𝑖

(𝑒𝛽ℏ𝜔𝑖 − 1)2 (8)
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𝑆(𝑇 ) = 𝑘B

𝑁𝜔

∑
𝑖=1

( 𝛽ℏ𝜔𝑖
𝑒𝛽ℏ𝜔𝑖 − 1

− 𝑙𝑛[1 − 𝑒−𝛽ℏ𝜔𝑖 ]) (9)

Figure S4: a) Internal energy E, b) Helmholtz free energy F, c) heat capacity 𝐶𝑣 and
d) entropy S of nitro functionalized MIL53 as a function of temperature in the harmonic
oscillator approximation using the computed DFT (red line) and force field frequencies (blue
dotted line).

9



Comparison of molecular dynamics based on ab initio and FF cal-

culations

The goal of this work is to use the obtained FF for studying the rotational linker dynamics

in NO2-MIL-53 for bigger supercells. Hence, to validate the FF, we did MD simulations with

the FF for a 2 × 1 × 1 supercell for a simulation time of 1 ns and compared these results with

AIMD results for the same supercell for a simulation time of 40 ps. These AIMD results were

already published in one of the previous works on linker dynamics in NO2-MIL-53. From the

MD simulations with AIMD and FF, the rotational angle of the Nitro terephthalate linkers

is obtained using a python code used in the previous work.16 The 2 × 1 × 1 supercell has

four sets of chains in the unit cell where each chain has two rotating linkers that are direct

neighbors along the pore direction.(see Figure S5) Hence a total of eight linkers are present

in the supercell.

Figure S5: Figure showing the pore of the 2 × 1 × 1 supercell (left) and (right) two rotating
linkers (a,b) along the pore direction (x) in a single chain in the 2 × 1 × 1 supercell.
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Figure S6: Free energy surface (FES) obtained with AIMD from rotational angle data of
neighboring linkers in a 2 × 1 × 1 supercell at 300 K.

AIMD

In AIMD simulations, at low temperature (300 K, Figure S6), the width of the FES minima

is around 10°. With an increase in temperature (see Figure S7), the minima in the FES

become wider (20° to 30°), due to the increased librations of the linkers at high temperatures.

At 300 K, the lowest energy minima are majorly seen at orientations in PN regions where at

least one linker is planar, and the other linker is oriented at 50° or ±135°. Region NN with

acute angles of (−25°, 25°) is also observed in scarce instances at 300 K. With an increase in

temperature to 450 K and 700 K region NN becomes more prominent, the planar orientation

of linkers gradually disappears, and we see oblique angles for the linkers i.e., centered around

(−140°, 25°) or (140°, 150°).

FF

The FES from 1 ns FF simulations at two temperatures 300 K and 450 K are shown in Figure

S8 and S9. Considering first the FES at 300 K we observe that the minima are wider and
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(a)

(b)

Figure S7: Free energy surface (FES) plots obtained from rotational angle of neighboring
linkers in a 2 × 1 × 1 supercell with AIMD at temperatures a) 450 K and b) 700 K.

mostly seen at orientations in region PN where linker a is planar (0° or ±180°), and the

other linker b is oriented between 80° and 130° or ±50° to ±100°. Some sampling of region
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NN is also observed with an acute angle for both linkers a, b centered around (30°, 30°).

With an increase in temperature, region NN becomes prominent and centered around (30°,

30°) and (−150°, −150°). Note here, region NN may not be a minima, but it is a transition

state between the two adjacent PN minima regions. This is confirmed later in the longer

MD simulations of a 4 × 2 × 2 supercell in Figure 4 in the main paper.

Figure S8: Free energy surface (FES) obtained with FF from rotational angle data of
neighboring linkers in a 2 × 1 × 1 supercell at temperature 300 K.

Figure S9: Free energy surface (FES) plots obtained from rotational angle of neighboring
linkers in a 2 × 1 × 1 supercell with FF at 450 K.
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4 × 2 × 2 supercell

Figure S10: Figure showing 4 × 2 × 2 supercell with all 16 chains in the supercell.

Interactions with neighboring linkers along perpendicular to pore

direction

In the main paper, we elaborated on neighboring interactions between linkers along the pore

direction (x). Here, we present and discuss the time trajectories for some of the linkers and

its perpendicular neighbors along y or z direction. The notation for the different sets of

chains shown in Figure S10 is followed for the time traces below.

Structurally, linkers from different chains directly stack over each other when there is a
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hydroxyl group between the chains. For example a hydroxyl group is present between chains

(1,4), (2,3), (4,8), (5,7) etc.(shown in Figure S12a) The other kind of chain pairs are those

where the hydroxyl group is not present between them and chains do not directly stack over

each other but are alternately stacked. Some examples of these pairs include (3,4), (6,7), (4,9),

(2,14) etc.(shown in Figure S12b) The steric interactions should be higher for the chain pairs

with hydroxyl group between them because of the direct stacking along y and z directions.

Hence, we look closely into those chain pairs with hydroxyl group between them for linker

interactions.

Figure S11: Figure showing chains 1, 2, 3, and 4 of the 4 × 2 × 2 supercell in S10 along ‘x’
direction.
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(a) Chains 1 and 4 with hydroxyl group in between showing directly stacked
over each other when viewed along ‘z’ direction.

(b) Chains 3 and 4 without hydroxyl group in between showing alternately
stacked when viewed along ‘z’ direction.

Figure S12: Chains (a) with hydroxyl group in between, (b) without hydroxyl group in
between.
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Qualitatively we look for changes in the perpendicular neighbor linker pairs, when there is

a change in conformation from 0° to ±180° or vice versa, or change in width of the librations

in either of the linkers. In Figure S13a and S13b, linkers librate around (±180°, 0°) and

(−90°, 90°) i.e., (P,P) and (N,N ) configurations respectively. In Figure S14a and S14b

libration of linkers in this case is around (90°, 0°) and (0°, 90°) i.e., (N, P) and vice versa.

Similarly, for linkers in Figure S15 conformations are (N, P) and (P, P). So, for all different

combinations of linker conformations P and N where 𝑃 = librations around 0° or ±180° and

𝑁 = librations around, ±90° we did not observe a distinct change in the perpendicular linker

due to change in the other linker conformation by 180°flips or changed width of librations.

(a) (b)

Figure S13: MD time trajectories of one of the linkers in chains (3,6) and (2,3).
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(a) (b)

Figure S14: MD time trajectories of one of the linkers in chains (1,4) and (4,8).

(a) (b)

Figure S15: MD time trajectories of one of the linkers in chains (5,7) and (12,2).
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Energetics of 180° rotations in planar linkers

To obtain the energy barrier for the 180° flips of a single planar linker, we zoom into one of

the rotational flips and show an illustrative path followed on the FES during the flips. Figure

S16a shows closely the rotational angle change of linker d between 33.17 ns and 33.21 ns for

the same chain as in Figure 7a in the main paper. The rotational flip occurs between the

indicated dotted lines over a time of, ∼0.004 ns which is 4 ps. The conformational changes

occurring during the rotational flip in linker d and its direct neighbors linkers a and c are

shown as the rotational path on the FES with direct neighbors as collective variables in

Figure S16b. Since linker d has two direct neighbors a and c, the transition path considering

both the neighbors is shown during the flip from start to end for ad and cd. From the

starting conformations in the minima at start ad to the final 180° apart conformation for

linker d at end ad, the transition requires for linkers ad to overcome a transition state energy

of around 24.375 kJ/mol. A similar transition path is also observed for linkers cd, with an

energy barrier of 24.375 kJ/mol. The free energy for these transition states is higher than the

rotational energy barrier for a 180° rotation of nitro-substituted terephthalic acid molecule

(17.1 kJ/mol) where neighboring interactions are not present but lower than experimentally

obtained activation energy values for the NO2-MIL-53 MOF (32.3 ± 1.3 kJ/mol)16.
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(a)

(b)

Figure S16: a) Zoomed in MD trajectory at t1 and between regions ΔT01 and ΔT12 (from
Figure 7a in the main paper). Dotted blue lines indicate the start and end of the rotational
angle change of the planar linker d. b) FES of “1, 2” type neighbors showing an illustrative
path of the 180° rotational angle change of planar linker d and the “ad” and “cd” pathway.
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“1, 3” type interactions

Figure S17: MD time trajectory of a chain in the 4 × 2 × 2 supercell, highlighting 180°
rotational flips for a short time of ∼1.5 ns.
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Figure S18: MD time trajectory of a chain in the 4 × 2 × 2 supercell, highlighting 180°
rotational flips for a time of ∼8 ns.
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6 × 2 × 2 supercell

Figure S19: Figure showing the six rotating linkers (a, b, c, d, e, f ) along the pore direction
(x) and their “1, 2” type (orange: includes pairs ab, bc, cd, de, ef, fa), “1, 3” type (green:
includes pairs ac, ae, bd, bf, ce, df) type neighbors for a single chain in the 6×2×2 supercell.

Note: For the FES plots of “1, 3” type neighbors, linker pairs ce and df were not included

to maintain the consistency of linkers selection on x axes (i.e., a, a, b, b) and y axes (i.e., c,

e, d, f ) of the plot. The FES “1, 3” type neighbors plot remained constant with and without

inclusion of ce and df pairs of linkers.

Figure S20 shows the FES of the 6 × 2 × 2 supercell ranging from −180° to 180° for the

“1, 2” type neighbors as collective variables. In line with the FES of the 4 × 2 × 2 supercell

for “1, 2” type neighbors (Figure 4), we only observe region PN, and the locations of minima

in the 6 × 2 × 2 supercell are at the same rotational angles as for the 4 × 2 × 2 supercell.

Figure S21 shows FES for 6 × 2 × 2 supercell with alternate or “1, 3” type neighbors as

collective variables. The deepest minima (PP(↑↑) and NN (↑↑)) in the FES plot of “1, 3”

type neighbors for a 6 × 2 × 2 supercell are located along the diagonal and corners of the

FES plot and the less deep minima (PP(↑↓)) are located on the edges of the FES, similar to

the 4 × 2 × 2 supercell. This implies alternate neighbors or “1, 3” type linkers are librating at
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Figure S20: Free energy surface (FES) for a 6 × 2 × 2 supercell, considering rotational angle
of “1, 2” type neighbors as collective variables.

the same rotational angles compared to the 4 × 2 × 2 supercell. The free energy surface plots

of 6 × 2 × 2 supercell are qualitatively and quantitatively identical to that of the 4 × 2 × 2

supercell.

Based on the time trajectories of the different chains in the 6 × 2 × 2 supercell, we show

here representative examples and discuss trends that are generally occurring. For instance,

in Figure S22 linkers a, c, e are librating between 𝑏 = 40° and 120° while linkers b, d, f

are librating around 𝑎 = 0° or ±180°. Between 10 ns and 14 ns, linkers b, d, f are librating

around 0° and are parallel(↑↑↑) aligned with each other. At ∼14 ns linker b rotates to ±180°,

thus being antiparallel(↓↑↑) aligned with respect to conformations of linkers d, f. As a result,

linker c librates over a large angle range (“1, 2” type interaction) as NO2 groups from both
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Figure S21: Free energy surface (FES) for a 6 × 2 × 2 supercell, considering rotational angle
of “1, 3” type neighbors as collective variables.

neighboring linkers b,d are pointing away from linker c, while linker a librates over a slightly

narrower range due to the NO2 groups from both neighboring linkers b, d pointing towards it.

The rotation of linker b to ±180° at 14 ns is followed by linker d to flip from 0° to ±180°(“1,

3” type interaction) around 18 ns and becomes parallel aligned with linker b but antiparallel

to linker f (↓↓↑). Due to the rotational change of linker d, wider librations in linker e and

narrower librations in linker c are observed (“1, 2” type interaction). This is then followed by

linker f to make the transition from 0° to ±180° (“1, 3” type interaction) around 24 ns. At

this point all three linkers b, d, f are again parallel aligned (↓↓↓).

At ∼6 ns, we observe dynamics that are rarely observed compared to the above discussed

“1, 3” type interactions. The linker d flips from 0° to ±180° conformation, thus becoming
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Figure S22: MD trajectory of the four linkers along the row for a specific chain in the
6 × 2 × 2 supercell.

antiparallel (↑↓↑) aligned with linkers b, f. The linkers b, f continue librating at 0° and

remain in this conformation, while linker d flips back to its original conformation after a few

nanoseconds at 9.3 ns, restoring the original parallel alignment of the three linkers b, d, f

(↑↑↑). A similar situation is observed for linker f from 26 ns to 29 ns. At 26 ns, linker f flips

from ±180° to 0°, thus flips to an antiparallel (↓↓↑) aligned state with linkers b, d. At 29 ns,

linker f rotates back to a parallel alignment with linkers b, d (↓↓↓) its “1,3” type neighbors.

The “1, 2” and “1, 3” type interactions in the 6 × 2 × 2 supercell are similar to the
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interactions observed for a 4 × 2 × 2 supercell. Additionally, the time between rotational

flips of “1, 3” type planar neighbors in the 6 × 2 × 2 supercell to restore parallel alignment is

also in the order of nanoseconds as in the case of 4 × 2 × 2 supercell. For the “1, 3” type

non-planar linkers, 180° rotational flips are rare events in the 6 × 2 × 2 supercell due to

the high energy barrier between the parallel and antiparallel aligned states (red regions and

unsampled regions in Figure S21), similar to observations in 4 × 2 × 2 supercell. From Figures

S20, S21, S22 and trajectories of different chains in 6 × 2 × 2 supercell we see they are always

in abcdef=PNPNPNPNPNPN... where P = nearly planar and N = non-planar conformations

which is similar to our observations for a 4 × 2 × 2 supercell. Thus, the qualitative behavior

of linker dynamics in the framework is well described by the 4 × 2 × 2 supercell.

Statistical Analysis of “13” type planar linker correlated

rotations

The model

We consider time series with either four (4 × 2 × 2 supercell) or six rotors (6 × 2 × 2 supercell).

By visual inspection of the data, we see that in either case, half of the rotors are librating

around an angle of ±90°, and the other rotors are rotating between angles of 0° and ±180°.

It is however visually apparent that the stationary positions are not exactly 0° or 180°. In all

cases there are random fluctuations (librations) around the means.

We will only consider the planar rotors that switch orientation, so that the number of

rotors is reduced to either 𝑀 = 2 or 𝑀 = 3 rotors. We will impose the model that each of

these rotors is either in position 𝑥 = 0 or 𝑥 = 1, corresponding to an angle of approximately

0° or ±180°. Henceforth we will only write angles in radial form.

Let (𝑦𝑖𝑗) denote the observed time series of rotor angles for rotors 𝑗 = 1, … , 𝑀 over a time

series parameterized by 𝑖 = 1, … , 𝑁. They may be viewed as observations in a hidden Markov

model, governed by the values of unobserved variables 𝑥𝑖𝑗 ∈ {0, 1} that change dynamically
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according to a Markov chain as discussed in Section .

We model the observed angle 𝑦𝑖𝑗 conditional on the unobserved value 𝑥𝑖𝑗 ∈ {0, 1} as

distributed according to the von Mises distribution. This gives for the emission probabilities

the model

𝑝(𝑦𝑖𝑗 ∣ 𝜇𝑖𝑗, 𝜅) =
exp(𝜅 cos(𝑦𝑖𝑗 − 𝛼 − 𝜇𝑖𝑗))

2𝜋𝐼0(𝜅)
,

where 𝜅 > 0 is a concentration parameter, 𝛼 ∈ (−𝜋/2, 𝜋/2) is a single offset parameter that

allows for a rotation relative to the purely vertical positions 0 and 𝜋, and where 𝐼0(𝜅) is the

modified Bessel function of order zero. We assume throughout that 𝜅 > 0 is the same for all

possible states. The emission angle 𝜇𝑖𝑗 for rotor 𝑗 at time 𝑖 is modeled as

𝜇𝑖𝑗 = 𝜋𝑥𝑖𝑗,

where 𝑥𝑖𝑗 ∈ {0, 1} encodes the binary state for rotor 𝑗 at time 𝑖. The values of 𝛼 and 𝜅 are a

priori not known and need to be estimated from the data.

If we would simply categorize each observation 𝑦𝑖𝑗 as lying closer to a 0° or a 180° angle,

there are two sources of problems:

• we ignore the unknown offset 𝛼 which may have a significant effect in a correct

classification, and

• many phantom switches (apparent switches that did in fact not happen) would be

observed due to observational noise in the data. In particular during a transition from

one state to another the angle may seem to switch frequently but we wish to interpret

this as a single transition.

We therefore need a more careful analysis using a careful modeling of the unobserved

variables 𝑥𝑖𝑗.
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Transition dynamics

In this section we discuss the dynamics of the transitions of the unobserved states 𝑥𝑖𝑗. This

will lead to the estimation of the parameters 𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃 (and 𝜆𝐴𝑃𝑡𝑜𝐴𝑃, if 𝑀 = 3) if we

would consider the values of 𝑥𝑖𝑗 to be known.

Throughout, let 𝐾 = 2𝑀 denote the total number of states. There are 𝐾 = 4 possible

states if 𝑀 = 2,

(0, 0), (0, 1), (1, 0), (1, 1),

and 𝐾 = 8 possible states if 𝑀 = 3,

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

The case 𝑀 = 2

In case 𝑀 = 2 there are essentially two transitions: from a parallel aligned state where

𝑥𝑖1 = 𝑥𝑖2 to a anti-parallel aligned state where 𝑥𝑖1 ≠ 𝑥𝑖2, and vice versa. We assume that

from a parallel aligned state, the transition to a anti-parallel aligned state happens at rate

2𝜆𝑃𝑡𝑜𝐴𝑃 (per unit time), so that the transition rate to a particular anti-parallel aligned state

happens at rate 𝜆𝑃𝑡𝑜𝐴𝑃. Similarly, from an anti-parallel aligned state we may transition to a

parallel aligned state at total rate 2𝜆𝐴𝑃𝑡𝑜𝑃, with each possible transition occurring at rate

𝜆𝐴𝑃𝑡𝑜𝑃.

We enumerate the states as {0, 1, 2, 3} corresponding to (𝑥𝑖1, 𝑥𝑖2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

The Markov chain in terms of parameters 𝜆𝑃𝑡𝑜𝐴𝑃 and 𝜆𝐴𝑃𝑡𝑜𝑃 is then given as

𝑃 = 𝐼 − ℎ𝐺
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where ℎ > 0 denotes the length of a time interval in seconds, and

𝐺 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝑃𝑡𝑜𝐴𝑃 0

𝜆𝐴𝑃𝑡𝑜𝑃 −2𝜆𝐴𝑃𝑡𝑜𝑃 0 𝜆𝐴𝑃𝑡𝑜𝑃

𝜆𝐴𝑃𝑡𝑜𝑃 0 −2𝜆𝐴𝑃𝑡𝑜𝑃 𝜆𝐴𝑃𝑡𝑜𝑃

0 𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝑃𝑡𝑜𝐴𝑃 −2𝜆𝑃𝑡𝑜𝐴𝑃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

which gives

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 − 2ℎ𝜆𝑃𝑡𝑜𝐴𝑃 ℎ𝜆𝑃𝑡𝑜𝐴𝑃 ℎ𝜆𝑃𝑡𝑜𝐴𝑃 0

ℎ𝜆𝐴𝑃𝑡𝑜𝑃 1 − 2ℎ𝜆𝐴𝑃𝑡𝑜𝑃 0 ℎ𝜆𝐴𝑃𝑡𝑜𝑃

ℎ𝜆𝐴𝑃𝑡𝑜𝑃 0 1 − 2ℎ𝜆𝐴𝑃𝑡𝑜𝑃 ℎ𝜆𝐴𝑃𝑡𝑜𝑃

0 ℎ𝜆𝑃𝑡𝑜𝐴𝑃 ℎ𝜆𝑃𝑡𝑜𝐴𝑃 1 − 2ℎ𝜆𝑃𝑡𝑜𝐴𝑃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Reduction to two states We may interpret the system as consisting of two states, 𝑃 and

𝐴𝑃, where 𝑃 denotes the parallel aligned state and 𝐴𝑃 denotes the anti-parallel aligned state.

The Markov transition matrix (for a time step ℎ > 0) given by

𝑃 = ⎡
⎢
⎣

1 − 2ℎ𝜆𝑃𝑡𝑜𝐴𝑃 2ℎ𝜆𝑃𝑡𝑜𝐴𝑃

2ℎ𝜆𝐴𝑃𝑡𝑜𝑃 1 − 2ℎ𝜆𝐴𝑃𝑡𝑜𝑃

⎤
⎥
⎦

.

Crude parameter estimation using maximum likelihood

For a sequence of observations 𝑥1, … , 𝑥𝑁 ∈ {𝐴, 𝑈}, write, for 𝑘, ℓ ∈ {𝐴, 𝑈},

𝑛𝑘ℓ = #{𝑖 = 1, … , 𝑛 − 1 ∶ 𝑥𝑖 = 𝑘, 𝑥𝑖+1 = ℓ}.
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For example 𝑛𝑃𝑡𝑜𝐴𝑃 counts the number of transitions from 𝑃 to 𝐴𝑃. The log likelihood,

conditioned on the initial state, is given by

ℓ𝑐(𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃) = 𝑛𝑃𝑃 log(1 − 2ℎ𝜆𝑃𝑡𝑜𝐴𝑃) + 𝑛𝑃𝑡𝑜𝐴𝑃 log 𝜆𝑃𝑡𝑜𝐴𝑃

+ 𝑛𝐴𝑃𝑡𝑜𝑃 log 𝜆𝐴𝑃𝑡𝑜𝑃 + 𝑛𝐴𝑃𝐴𝑃 log(1 − 2ℎ𝜆𝐴𝑃𝑡𝑜𝑃) + 𝐶,

where 𝐶 is an additive constant that may be ignored as it does not depend on 𝜆𝐴𝑃𝑡𝑜𝑃 or

𝜆𝑃𝑡𝑜𝐴𝑃. The first order conditions with respect to 𝜆𝑃𝑡𝑜𝐴𝑃 and 𝜆𝐴𝑃𝑡𝑜𝑃 are

∂𝜆𝑃𝑡𝑜𝐴𝑃
ℓ(𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃) = 𝑛𝑃𝑡𝑜𝐴𝑃

𝜆𝑃𝑡𝑜𝐴𝑃
− 2ℎ𝑛𝑃𝑡𝑜𝑃

1 − 2ℎ𝜆𝑃𝑡𝑜𝐴𝑃
= 0,

∂𝜆𝐴𝑃𝑡𝑜𝑃
ℓ(𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃) = 𝑛𝐴𝑃𝑡𝑜𝑃

𝜆𝐴𝑃𝑡𝑜𝑃
− 2ℎ𝑛𝐴𝑃𝑡𝑜𝐴𝑃

1 − 2ℎ𝜆𝐴𝑃𝑡𝑜𝑃
= 0,

which gives the maximum likelihood estimator

𝜆̂𝑃𝑡𝑜𝐴𝑃 = 𝑛𝑃𝑡𝑜𝐴𝑃
2ℎ(𝑛𝑃𝑡𝑜𝑃 + 𝑛𝑃𝑡𝑜𝐴𝑃)

, 𝜆̂𝐴𝑃𝑡𝑜𝑃 = 𝑛𝐴𝑃𝑡𝑜𝑃
2ℎ(𝑛𝐴𝑃𝑡𝑜𝐴𝑃 + 𝑛𝐴𝑃𝑡𝑜𝑃)

,

The case 𝑀 = 3

In case 𝑀 = 3, we either have a full parallel aligned state, where 𝑥𝑖1 = 𝑥𝑖2 = 𝑥𝑖3, or we have

an antiparallel aligned state in which two states are identical and one state is different. We

allow transitions:

• from parallel aligned to antiparallel aligned (total rate 3𝜆𝑃𝑡𝑜𝐴𝑃, each possible flip at

rate 𝜆𝑃𝑡𝑜𝐴𝑃),

• from antiparallel aligned to antiparallel aligned (there are two components that can

switch to have this transition, so we have total rate 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃, and a rate 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 for

each component to switch),

• and a single possible transition from antiparallel aligned to parallel aligned, which

happens at rate 𝜆𝐴𝑃𝑡𝑜𝑃.
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.

We have eight states {0, 180}3, which we enumerate as

(0, 0, 0), (0, 0, 180), (0, 180, 0), (0, 180, 180),

(180, 0, 0), (180, 0, 180), (180, 180, 0), (180, 180, 180).

The generator in terms of these states is

𝐺 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝑃𝑡𝑜𝐴𝑃 0 𝜆𝑃𝑡𝑜𝐴𝑃 0 0 0

𝜆𝐴𝑃𝑡𝑜𝑃
−𝜆𝐴𝑃𝑡𝑜𝑃

− 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃
0 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 0 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 0 0

𝜆𝐴𝑃𝑡𝑜𝑃 0 −𝜆𝐴𝑃𝑡𝑜𝑃
− 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃

𝜆𝐴𝑃𝑡𝑜𝐴𝑃 0 0 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 0

0 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 𝜆𝐴𝑃𝑡𝑜𝐴𝑃
−𝜆𝐴𝑃𝑡𝑜𝑃

− 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃
0 0 0 𝜆𝐴𝑃𝑡𝑜𝑃

𝜆𝐴𝑃𝑡𝑜𝑃 0 0 0 −𝜆𝐴𝑃𝑡𝑜𝑃
− 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃

𝜆𝐴𝑃𝑡𝑜𝐴𝑃 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 0

0 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 0 0 𝜆𝐴𝑃𝑡𝑜𝐴𝑃
−𝜆𝐴𝑃𝑡𝑜𝑃

− 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃
0 𝜆𝐴𝑃𝑡𝑜𝑃

0 0 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 0 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 0 −𝜆𝐴𝑃𝑡𝑜𝑃
− 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃

𝜆𝐴𝑃𝑡𝑜𝑃

0 0 0 𝜆𝑃𝑡𝑜𝐴𝑃 0 𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝑃𝑡𝑜𝐴𝑃 −3𝜆𝑃𝑡𝑜𝐴𝑃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with associated transition matrix 𝑃 = 𝐼 − ℎ𝐺.

Similarly to the case 𝑀 = 2, we count transitions as follows:

• 𝑛𝑃𝑃: stay in parallel aligned state

• 𝑛𝑃𝑡𝑜𝐴𝑃: move from parallel aligned to anti-parallel aligned state

• 𝑛𝐴𝑃𝑡𝑜𝑃: move from anti-parallel aligned to parallel aligned

• 𝑛𝐴𝑃Δ𝐴𝑃: move from an anti-parallel aligned state to a different anti-parallel aligned

state

• 𝑛𝐴𝑃𝐴𝑃: stay in a particular unaligned state
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The log likelihood is given as

ℓ𝑐(𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃, 𝜆𝐴𝑃𝑡𝑜𝐴𝑃) = 𝑛𝑃𝑃 log(1 − 3𝜆𝑃𝑡𝑜𝐴𝑃ℎ) + 𝑛𝑃𝑡𝑜𝐴𝑃 log(3𝜆𝑃𝑡𝑜𝐴𝑃ℎ)

+ 𝑛𝐴𝑃𝑡𝑜𝑃 log 𝜆𝐴𝑃𝑡𝑜𝑃 + 𝑛𝐴𝑃Δ𝐴𝑃 log(2𝜆𝐴𝑃𝑡𝑜𝐴𝑃)

+ 𝑛𝐴𝑃𝐴𝑃 log(1 − ℎ(𝜆𝐴𝑃𝑡𝑜𝑃 + 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃))

(10)

Differentiation with respect to 𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃 and 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 gives

∂𝜆𝑃𝑡𝑜𝐴𝑃
ℓ𝑐(𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃, 𝜆𝐴𝑃𝑡𝑜𝐴𝑃) = − 3ℎ𝑛𝑃𝑃

1 − 3𝜆𝑃𝑡𝑜𝐴𝑃ℎ
+ 𝑛𝑃𝑡𝑜𝐴𝑃

𝜆𝑃𝑡𝑜𝐴𝑃
= 0

∂𝜆𝐴𝑃𝑡𝑜𝑃
ℓ𝑐(𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃, 𝜆𝐴𝑃𝑡𝑜𝐴𝑃) = 𝑛𝐴𝑃𝑡𝑜𝑃

𝜆𝐴𝑃𝑡𝑜𝑃
− ℎ𝑛𝐴𝑃𝐴𝑃

1 − ℎ(𝜆𝐴𝑃𝑡𝑜𝑃 + 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃)
= 0,

∂𝜆𝐴𝑃𝑡𝑜𝐴𝑃
ℓ𝑐(𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃, 𝜆𝐴𝑃𝑡𝑜𝐴𝑃) = 𝑛𝐴𝑃Δ𝐴𝑃

𝜆𝐴𝑃𝑡𝑜𝐴𝑃
− 2ℎ𝑛𝐴𝑃𝐴𝑃

1 − ℎ(𝜆𝐴𝑃𝑡𝑜𝑃 + 2𝜆𝐴𝑃𝑡𝑜𝐴𝑃)
= 0

After rearranging this gives a linear system in 𝜆𝐴𝑃𝑡𝑜𝑃, 𝜆𝑃𝑡𝑜𝐴𝑃 and 𝜆𝐴𝑃𝑡𝑜𝐴𝑃, with solution

𝜆̂𝑃𝑡𝑜𝐴𝑃 = 𝑛𝐴𝑈
3ℎ(𝑛𝑃𝑃 + 𝑛𝑃𝑡𝑜𝐴𝑃)

𝜆̂𝐴𝑃𝑡𝑜𝑃 = 𝑛𝐴𝑃𝑡𝑜𝑃
ℎ(𝑛𝐴𝑃𝑡𝑜𝑃 + 𝑛𝐴𝑃𝐴𝑃 + 𝑛𝐴𝑃Δ𝐴𝑃)

𝜆̂𝐴𝑃𝑡𝑜𝐴𝑃 = 𝑛𝐴𝑃Δ𝐴𝑃
2ℎ(𝑛𝐴𝑃𝑡𝑜𝑃 + 𝑛𝐴𝑃𝐴𝑃 + 𝑛𝐴𝑃Δ𝐴𝑃)

EM-approach, Baum-Welch algorithm

A careful approach for estimating the transition rates requires that we take into account

the uncertainty in the estimation of the unobserved states 𝑥𝑖𝑗. This gives a hierarchical

model and it is the Expectation-Maximization (EM)-algorithm21,22 that takes care of the

estimation of the parameter 𝜆 (consisting of 𝜆𝑃𝑡𝑜𝐴𝑃, 𝜆𝐴𝑃𝑡𝑜𝑃 and, if 𝑀 = 3, 𝜆𝐴𝑃𝑡𝑜𝐴𝑃), as well

as the parameters 𝛼 and 𝜅. The EM-algorithm iteratively determines a new approximation

of the maximum likelihood equations in the E-step, and solves these in the M-step. For an

introduction to this algorithm see21.
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In the Expectation (E)-step, we determine the conditional distribution of the states

(𝑥𝑖) given observations (𝑦𝑖) and parameters 𝜃′ = (𝜅′, 𝜆′, 𝛼′), to give the expected complete

likelihood 𝑄(𝜃, 𝜃′). In the Maximimization (M)-step we maximize 𝑄(𝜃, 𝜃′) with respect to

𝜃 = (𝜅, 𝜆, 𝛼).

The E-step may be carried out using the Baum-Welch algorithm, as described in21, and

we refer the readers to that reference and the computer code for details. We will now focus

on the M-step of the algorithm.

The EM algorithm then works by alternating the E and M step for a fixed number of

iterations.

M-step

Let (𝑥𝑖) denote the hidden Markov chain with values in 1, … , 𝐾. Conditional on 𝑥𝑖, we have

emission probabilities

𝑝(𝑦𝑖𝑗 ∣ 𝑥𝑖, 𝜅, 𝛼) =
exp(𝜅 cos(𝜇𝑖,𝑗 + 𝛼 − 𝑦𝑖𝑗))

2𝜋𝐼0(𝜅)
.

The complete data log likelihood decomposes as

ℓ(𝜅, 𝛼, 𝜆; (𝑥𝑖), (𝑖)) =
𝑁

∑
𝑖=1

𝑀
∑
𝑗=1

log 𝑝(𝑦𝑖𝑗 ∣ 𝑥𝑖 = 𝑘, 𝜅, 𝛼) +
𝑁−1
∑
𝑖=1

log 𝑝(𝑥𝑖+1 ∣ 𝑥𝑖; 𝜆).

For a sequence of state probabilities (𝛾𝑖𝑘) and transition probabilities (𝜉𝑖𝑘ℓ) (see section

13.2 in21), we have expected log likelihood

𝑞(𝜅, 𝛼, 𝜆) = 𝑞1(𝜅, 𝛼) + 𝑞2(𝜆),
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where

𝑞1(𝜅, 𝛼) =
𝑁

∑
𝑖=1

𝐾
∑
𝑘=1

𝛾𝑖𝑘 log 𝑝(𝑖 ∣ 𝑖 = 𝑗, 𝜅, 𝛼)

=
𝑁

∑
𝑖=1

𝐾
∑
𝑘=1

𝛾𝑖𝑘 (𝜅
𝑀

∑
𝑗=1

cos(𝑦𝑖𝑗 − 𝜇𝑗𝑘 − 𝛼) − 𝑀 log 2𝜋 − 𝑀 log 𝐼0(𝜅)) .

and

𝑞2(𝜆) =
𝑁−1
∑
𝑖=1

𝐾
∑
𝑘=1

𝐾
∑
ℓ=1

𝜉𝑖𝑘ℓ log 𝑃𝜆(𝑘, ℓ).

The first order condition with respect to 𝛼 is

𝑁
∑
𝑖=1

𝐾
∑
𝑘=1

𝛾𝑖𝑘

𝑀
∑
𝑗=1

sin(𝑦𝑖𝑗 − 𝜇𝑗𝑘 − 𝛼) = 0,

which is solved by setting

̂𝛼 = arg
𝑁

∑
𝑖=1

𝐾
∑
𝑘=1

𝑀
∑
𝑗=1

𝛾𝑖𝑘 exp (i[𝑦𝑖𝑗 − 𝜇𝑗𝑘]) .

The first order condition with respect to 𝜅 is

𝑁
∑
𝑖=1

𝐾
∑
𝑘=1

𝛾𝑖𝑘 (
𝑀

∑
𝑗=1

cos(𝑦𝑖𝑗 − 𝜇𝑗𝑘) − 𝑀 𝑑
𝑑𝜅

log 𝐼0(𝜅)) = 0.

Solving for 𝜅 gives the implicit equation to be solved for 𝜅,

𝑑
𝑑𝜅

log 𝐼0( ̂𝜅) =
∑𝑁

𝑖=1 ∑𝐾
𝑘=1 𝛾𝑖𝑘 ∑𝑀

𝑗=1 cos(𝑦𝑖𝑗 − ̂𝜇𝑗𝑘)

𝑀 ∑𝑁
𝑖=1 ∑𝐾

𝑘=1 𝛾𝑖𝑘
=∶ 𝑅𝛾.

Following23, we introduce the functions 𝐴𝑝(𝜅) = 𝐼𝑝/2(𝜅)/𝐼𝑝/2−1(𝜅). We then have that

𝑑
𝑑𝜅

log 𝐼0(𝜅) = 𝐼1(𝜅)
𝐼0(𝜅)

= 𝐴2(𝜅).
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and, as it turns out23,

𝑑
𝑑𝜅

𝐴𝑝(𝜅) = 1 − 𝐴𝑝(𝜅)2 − 𝑝 − 1
𝜅

𝐴𝑝(𝜅).

One step of the Newton-Raphson is therefore given by

𝜅(ℓ+1) = 𝜅(ℓ) −
𝐴2(𝜅(ℓ)) − 𝑅𝛾

1 − 𝐴2(𝜅(ℓ))2 − 1
𝜅(ℓ) 𝐴2(𝜅(ℓ) .

A good starting point for the iterations is provided by

𝜅(0) =
𝑅𝛾(2 − 𝑅2

𝑢)

1 − 𝑅2
𝛾

.

Finally for the Markov transition probabilities we have the first order condition

𝑁−1
∑
𝑖=1

𝐾
∑
𝑘=1

𝐾
∑
ℓ=1

𝜉𝑖𝑘ℓ∇𝜆𝑃𝜆(𝑘, ℓ)/𝑃𝜆(𝑘, ℓ) = 0. (11)

The case 𝑀 = 2

In the two-rotor case, we have (approximately)

𝑃𝜆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 − 2ℎ𝜆𝑃𝑡𝑜𝐴𝑃 ℎ𝜆𝑃𝑡𝑜𝐴𝑃 ℎ𝜆𝑃𝑡𝑜𝐴𝑃 0

ℎ𝜆𝐴𝑃𝑡𝑜𝑃 1 − 2ℎ𝜆𝐴𝑃𝑡𝑜𝑃 0 ℎ𝜆𝐴𝑃𝑡𝑜𝑃

ℎ𝜆𝐴𝑃𝑡𝑜𝑃 0 1 − 2ℎ𝜆𝐴𝑃𝑡𝑜𝑃 ℎ𝜆𝐴𝑃𝑡𝑜𝑃

0 ℎ𝜆𝑃𝑡𝑜𝐴𝑃 ℎ𝜆𝑃𝑡𝑜𝐴𝑃 1 − 2ℎ𝜆𝑃𝑡𝑜𝐴𝑃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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Consequently,

∂𝜆𝑃𝑡𝑜𝐴𝑃
𝑃𝜆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2ℎ ℎ ℎ 0

0 0 0 0

0 0 0 0

0 ℎ ℎ −2ℎ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ∂𝜆𝐴𝑃𝑡𝑜𝑃
𝑃𝜆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

ℎ −2ℎ 0 ℎ

ℎ 0 −2ℎ ℎ

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Then (11) gives the equations

𝑁−1
∑
𝑖=1

(𝜉𝑖,1,1 + 𝜉𝑖,4,4) −2ℎ
1 − 2ℎ𝜆𝑃𝑡𝑜𝐴𝑃

+ (𝜉𝑖,1,2 + 𝜉𝑖,1,3 + 𝜉𝑖,4,2 + 𝜉𝑖,4,3) ℎ
ℎ𝜆𝑃𝑡𝑜𝐴𝑃

= 0,

𝑁−1
∑
𝑖=1

(𝜉𝑖,2,2 + 𝜉𝑖,3,3) −2ℎ
1 − 2ℎ𝜆𝐴𝑃𝑡𝑜𝑃

+ (𝜉𝑖,2,1 + 𝜉𝑖,2,4 + 𝜉𝑖,3,1 + 𝜉𝑖,3,4) ℎ
ℎ𝜆𝐴𝑃𝑡𝑜𝑃

= 0,

resulting in

𝜆𝑃𝑡𝑜𝐴𝑃 =
∑𝑁−1

𝑖=1 (𝜉𝑖,1,2 + 𝜉𝑖,1,3 + 𝜉𝑖,4,2 + 𝜉𝑖,4,3)

2ℎ ∑𝑁−1
𝑖=1 (𝜉𝑖,1,1 + 𝜉𝑖,4,4 + 𝜉𝑖,1,2 + 𝜉𝑖,1,3 + 𝜉𝑖,4,2 + 𝜉𝑖,4,3)

,

𝜆𝐴𝑃𝑡𝑜𝑃 =
∑𝑁−1

𝑖=1 (𝜉𝑖,2,1 + 𝜉𝑖,2,4 + 𝜉𝑖,3,1 + 𝜉𝑖,3,4)

2ℎ ∑𝑁−1
𝑖=1 (𝜉𝑖,2,2 + 𝜉𝑖,3,3 + 𝜉𝑖,2,1 + 𝜉𝑖,2,4 + 𝜉𝑖,3,1 + 𝜉𝑖,3,4)

.

The case 𝑀 = 3

The case 𝑀 = 3 may be handled analogously; for details see the computer code.

Numerical comparison

In this section we briefly compare the crude MLE-based estimation (which is also used as

initialization of the EM-algorithm) with the EM-approach. In both cases we have to decide

on the sub sampling used (i.e. whether we take every element, or every 10th/100th/1000th

element of the data) when processing the data. The amount of sub sampling of the data

strongly affects the estimated parameters when using the ‘crude’ maximum likelihood method.

A likely explanation is that once a transition occurs it takes a few time steps in which there is

37



even some back and forth, which leads incorrectly to a large transition count. This is exactly

the motivation for employing the EM-approach, as it takes care of this uncertainty.

Two rotors

In the initialization, the number of transitions 𝑛𝐴𝑈, 𝑛𝐴𝐴, 𝑛𝑈𝐴, 𝑛𝑈𝑈 is estimated by inter-

preting every position as either unambiguously 𝐴 or 𝑈 based on the relative angle (ignoring

effects of noise). Subsequently the MLE approach to parameter estimation is carried out as

described in the previous section

initialization result EM
subsampling rate 𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝐴𝑃𝑡𝑜𝑃 𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝐴𝑃𝑡𝑜𝑃

1 0.512 2.03 0.0897 0.385
10 0.197 0.805 0.0898 0.385
100 0.0897 0.385 0.0898 0.385
1000 0.0898 0.386 0.0808 0.354

Three rotors

Here, we simply use the initialization by maximum likelihood.

initialization result EM
subsampling rate 𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝐴𝑃𝑡𝑜𝑃 𝜆𝐴𝑃𝑡𝑜𝐴𝑃 𝜆𝑃𝑡𝑜𝐴𝑃 𝜆𝐴𝑃𝑡𝑜𝑃 𝜆𝐴𝑃𝑡𝑜𝐴𝑃

1 0.521 2.744 2.266 0.0447 0.199 0.159
10 0.246 1.272 0.755 0.0447 0.199 0.159
100 0.0894 0.477 0.239 0.0372 0.159 0.159
1000 0.0372 0.159 0.159 0.0373 0.160 0.158
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