TY - DATA T1 - Data underlying the research of adipogenic dedifferentiation enhances survival of human umbilical cord-derived mesenchymal stem cells under oxidative stress PY - 2024/12/13 AU - Yin Yuan UR - DO - 10.4121/e5c0cb7b-81f5-465a-9e50-a3ab04f9e56a.v1 KW - Mesenchymal stem cells KW - umbilical cord KW - dedifferentiation KW - cell survival KW - adipogenesis N2 -

Mesenchymal stem cells (MSCs) serve as ideal candidates for a broad range of cell-based therapies. However, cell aging caused by long-term in vitro expansion and poor survival after in vivo delivery greatly limits their success in preclinical and clinical applications. Dedifferentiation represents a potential strategy for enhancing the retention and function of MSCs in hostile environments. In this study, we evaluated the cell phenotype, proliferation, and differentiation potential, as well as the anti-oxidative stress ability of human umbilical cord-derived MSCs (hMSCs) manipulated with adipogenic priming and subsequent dedifferentiation. After an in vitro differentiation and dedifferentiation procedure, the resultant dedifferentiated hMSCs (De-hMSCs) displayed properties similar to their original counterparts, including morphology, immunophenotype and mesodermal potential (Figure 1&S1). Upon re-induction, De-hMSCs exhibited a significantly higher adipogenic differentiation capability than unmanipulated hMSCs (Figure 2). The proliferative ability of De-hMSCs increased transiently in comparison to uncommitted hMSCs (Figure 3). Importantly, De-hMSCs showed a significantly enhanced ability to resist tert-butyl hydroperoxide (t-BHP) induced apoptosis compared to undifferentiated hMSCs (Figure 4). Mechanisms involving bcl-2 family proteins and autophagy may contribute to the demonstrated advantages of dedifferentiation-reprogrammed hMSCs (Figure 5&6). These results indicate that adipogenic dedifferentiation promotes adipogenesis and cell persistence, as well as preserves the stemness of human umbilical cord-derived MSCs that have been committed to the adipocytic lineage. As a unique stem cell population, dedifferentiated MSCs may represent an attractive and promising candidate for MSC-based therapy.

ER -