TY - DATA
T1 - Data presented in the paper: A Novel Instrument for Bed Dynamics Observation Supports: Machine Learning Applications in Mangrove Biogeomorphic Processes
PY - 2020/05/24
AU - Zhan Hu
AU - J. Zhou
AU - C. Wang
AU - H. Wang
AU - Z. He
AU - Y. Peng
AU - P. Zheng
AU - F. Cozzoli
AU - T.J. (Tjeerd) Bouma
UR - https://data.4tu.nl/articles/dataset/Data_presented_in_the_paper_A_Novel_Instrument_for_Bed_Dynamics_Observation_Supports_Machine_Learning_Applications_in_Mangrove_Biogeomorphic_Processes/12692429/1
DO - 10.4121/uuid:3d971ec0-7a0d-46fa-be02-a2b3d4b9badd
KW - Bed-level dynamics
KW - Laster based Surface Elevation Dynamics (LSED)-sensor
KW - Machine learning
KW - Tidal flats
N2 - Short-term bed level dynamics on the intertidal flats plays a critical role in long-term coastal wetland dynamics. High-frequency observation techniques are crucial for better understanding of intertidal biogeomorphic evolutions. Here, we introduce an innovative instrument for bed dynamics observation, i.e. LSED-sensor (Laster based Surface Elevation Dynamics sensor). LSED-sensors inherit the merits of the previously-introduced optical SED-sensors as it enables continuous long-term monitoring with relatively low cost of labor and acquisition. By adapting Laster-ranging technique, LSED-sensors avoid touching the measuring object (i.e. bed surface) and they do not rely on daylights, as it is for the optical SED-sensors. Furthermore, the new LSED-sensors are equipped with a real-time data transmission function, enabling creating automatic observation networks covering multiple (remote) sites. During a 21-days field survey in a mangrove wetland, good agreement (R2=0.7) has been obtained between the automatic LSED-sensor measurement and an accurate ground-truth measurement method, i.e. Sedimentation Erosion Bars. The obtained LSED-sensor data was subsequently used to develop machine learning predictors, which revealed the main drivers of the accumulative and daily bed level changes. We expect that the LSED-sensors can further support machine learning applications to extract new knowledge on coastal biogeomorphic processes.
ER -