%0 Generic %A Lin, Nan %A Orfanoudakis, Stavros %D 2024 %T Data underlying the publication: PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation %U %R 10.4121/b27152e4-4237-40f9-a72c-e6a1ca916960.v1 %K power system %K smart grid %K power flow %X

Synthetic power flow dataset consist of three cases: 14-bus, 118-bus and 6470-bus. The line parameters, generator/load injections, voltage setpoints are randomly sampled based on the standard scenario. The 14-bus case consists of 100000 scenarios, 118-bus 50000 scenarios, and 6470-bus 30000 scenarios.


If you use parts of this dataset, please cite as:


@misc{lin2023powerflownet,

   title={PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation}, 

   author={Nan Lin and Stavros Orfanoudakis and Nathan Ordonez Cardenas and Juan S. Giraldo and Pedro P. Vergara},

   year={2023},

   eprint={2311.03415},

   archivePrefix={arXiv},

   primaryClass={cs.LG}

}

%I 4TU.ResearchData