%0 Generic %A Lin, Nan %A Orfanoudakis, Stavros %D 2024 %T Data underlying the publication: PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation %U %R 10.4121/b27152e4-4237-40f9-a72c-e6a1ca916960.v1 %K power system %K smart grid %K power flow %X <p>Synthetic power flow dataset consist of three cases: 14-bus, 118-bus and 6470-bus. The line parameters, generator/load injections, voltage setpoints are randomly sampled based on the standard scenario. The 14-bus case consists of 100000 scenarios, 118-bus 50000 scenarios, and 6470-bus 30000 scenarios.</p><p><br></p><p>If you use parts of this dataset, please cite as:</p><p><br></p><p>@misc{lin2023powerflownet,</p><p> title={PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation}, </p><p> author={Nan Lin and Stavros Orfanoudakis and Nathan Ordonez Cardenas and Juan S. Giraldo and Pedro P. Vergara},</p><p> year={2023},</p><p> eprint={2311.03415},</p><p> archivePrefix={arXiv},</p><p> primaryClass={cs.LG}</p><p>}</p> %I 4TU.ResearchData