%0 Generic %A Henriques da Silva, Renato %A Schmidt, Alexandra M. %A Duchesne, Sophie %A Fortin St-Gelais, Nicolas %D 2022 %T Data underlying the research on On-line warning system for pipe burst using Bayesian dynamic linear models %U https://data.4tu.nl/articles/dataset/Data_underlying_the_research_on_On-line_warning_system_for_pipe_burst_using_Bayesian_dynamic_linear_models/17169383/3 %R 10.4121/17169383.v3 %K pipe break %K water flow %K dynamic linear model %X <p>The dataset contains the following items:</p> <p><br></p> <p>- dma1_flow.txt = hourly water flow (m3/h) for district meter area 1</p> <p>(rows are days, columns are the 24 hours)</p> <p><br></p> <p>- dma1_pressure.txt = hourly pressure (psi) for district meter area 1</p> <p>(rows are days, columns are the 24 hours)<br> </p> <p><br></p> <p>- temperature.txt = hourly temperature (Celcius)</p> <p>(rows are days, columns are the 24 hours)<br> </p> <p><br></p> <p>- wk_dummy.txt = dummy variable indicating whether its a workday or a weekend</p> <p>(rows are days, columns are the 2 dummy variables)<br> </p> <p><br></p> <p>- dates : dates of the recordings</p> <p>(rows are days)<br> </p> <p><br></p> <p>dlm_script.R : a R script to run the dynamic linear model with the example dataset.</p> <p><br></p> %I 4TU.ResearchData