%0 Generic %A Ritzen, Linda %A Montano, Vincenzo %A Garcia, Santiago J. %D 2021 %T Supplementary data to the paper: 3D Printing of a Self-Healing Thermo-plastic Polyurethane Through FDM: from Polymer Slab to Mechanical Assessment %U https://data.4tu.nl/articles/dataset/Supplementary_data_to_the_paper_3D_Printing_of_a_Self-Healing_Thermo-plastic_Polyurethane_Through_FDM_from_Polymer_Slab_to_Mechanical_Assessment/13603775/1 %R 10.4121/13603775.v1 %K Self-healing %K Polyurethanes %K 3D printing %K Cut test %X
This dataset contains the data corresponding to the following publication:
Linda Ritzen, Vincenzo Montano and Santiago J. Garcia. 3D Printing of aSelf-Healing Thermo-plastic Polyurethane Through FDM: from Polymer Slab to Mechanical Assessment. Polymers 2021, 13, 305.https://doi.org/10.3390/polym13020305

Abstract:
The use of self-healing (SH) polymers to make 3D-printed polymeric parts offers the potential to increase the quality of 3D-printed parts and to increase their durability and damage tolerance due to their (on-demand) dynamic nature. Nevertheless, 3D-printing of such dynamic polymers is not a straightforward process due to their polymer architecture and rheological complexity and the limited quantities produced at lab-scale. This limits the exploration of the full potential of self-healing polymers. In this paper, we present the complete process for fused deposition modelling of a room temperature self-healing polyurethane. Starting from the synthesis and polymer slab manufacturing, we processed the polymer into a continuous filament and 3D printed parts. For the characterization of the 3D printed parts, we used a compression cut test, which proved useful when limited amount of material is available. The test was able to quasi-quantitatively assess both bulk and 3D printed samples and their self-healing behavior. The mechanical and healing behavior of the 3D printed self-healing polyurethane was highly similar to that of the bulk SH polymer. This indicates that the self-healing property of the polymer was retained even after multiple processing steps and printing. Compared to a commercial 3D-printing thermoplastic polyurethane, the self-healing polymer displayed a smaller mechanical dependency on the printing conditions with the added value of healing cuts at room temperature.

The dataset contains the following measurements:
- Differential Scanning Calorimetry (DSC) of SH-TPU.
- Filament thickness measurements of the filaments used for 3D printing.
- Fourier Transform Infrared Spectroscopy (FTIR) of SH-TPU in the pristine, filament and 3D printed condition.
- Force-displacement curves of the mechanical testing of SH-TPU and commercial TPU Ninjaflex.
- Rheology results (shear rate analysis and temperature sweep) of SH-TPU and commercial TPU Ninjaflex.
- Thermogravimetric analysis (TGA) of SH-TPU in pristine and filament condition.

The experimental set-up used to obtain these data can be found in the article and has also been included in the .txt files in the folders of the measurements.
%I 4TU.ResearchData