3 files

Dataset associated to publication: "High-rate biological selenate reduction in a sequencing batch reactor for recovery of hexagonal selenium"

Download all (1.4 MB)
posted on 2021-02-04, 09:41 authored by Bingnan SongBingnan Song, Jan Weijma, Renata van der Weijden, Cees Buisman, Zilin Tian

Results belonging to paper "High-rate biological selenate reduction in a sequencing batch reactor for recovery of hexagonal selenium".

Recovery of selenium (Se) from wastewater provides a solution for both securing Se supply and preventing Se pollution. Here, we developed a high-rate process for biological selenate reduction to elemental selenium. Distinctive from other studies, we aimed for a process with selenate as the main biological electron sink, with minimal formation of methane or sulfide. A sequencing batch reactor, fed with an influent containing 120 mgSe L-1 selenate and ethanol as electron donor and carbon source, was operated for 495 days. The high rates (419 ± 17 mgSe L-1 day-1) were recorded between day 446 and day 495 for a hydraulic retention time of 6h. The maximum conversion efficiency of selenate amounted to 96% with a volumetric conversion rate of 444 mgSe L-1 day-1, which is 6 times higher than the rates reported in the literature thus far. At the end of the experiment, a highly enriched selenate reducing biomass had developed, with a specific activity of 856±26 mgSe-1day-1gbiomass-1, which was nearly 1000-fold higher than that of the inoculum. No evidence was found for the formation of methane, sulfide, or volatile reduced selenium compounds like dimethyl-selenide or H2Se, revealing a high selectivity. Ethanol was incompletely oxidized to acetate. The produced elemental selenium partially accumulated in the reactor as pure (≥80% Se of the total mixture of biomass sludge flocs and flaky aggregates, and ~100% of the specific flaky aggregates) selenium black hexagonal needles, with cluster sizes between 20-200 µm. The new process may serve as the basis for a high-rate technology to remove and recover pure selenium from wastewater or process streams with high selectivity.


the Netherlands Enterprise Agency's TKI program

China Scholarship Council





xlsx csv


Environmental Technology, Wageningen University and Research, the Netherlands